The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Mycobactin     2-[(1-hydroxy-2-oxo-azepan- 3...

Synonyms: Mycobactins, mycobactin M, Mycobactin (M), CPD-12069, AC1NX8SZ, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mycobactin

  • Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall [1].
  • Overproduction and purification of the mbtB ArCP domain and MbtA in Escherichia coli allowed validation of the mycobactin initiation hypothesis, as sequential action of PptT (a phosphopantetheinyl transferase) and MbtA (a salicyl-AMP ligase) resulted in the mbtB ArCP domain being activated as salicyl-S-ArCP [2].
  • The exochelins are proposed as the functional extracellular iron-binding agents of BCG and other mycobacteria, the role of mycobactin being confined to that of a cell wall iron transporter [3].
  • These data indicate that 7H12 radiometric broth was able to rapidly demonstrate the mycobactin dependence of M. paratuberculosis and GLC and TLC procedures were capable of rapidly differentiating this organism from the other mycobacteria studied [4].
  • Rhodococcus bronchialis, R. terrae and R. rubropertinctus formed mycobactins, whereas the remaining species (R. coprophilus, R. equi, R. erythropolis, R. rhodnii, R. rhodochrous, R. ruber, R. maris and R. luteus) failed to synthesize these compounds even under conditions of strictly iron-limited growth [5].
 

High impact information on Mycobactin

  • The finding that ferri-exochelins but not iron transferrin transfer iron to mycobactins in the cell wall underscores the importance of exochelins in iron acquisition [1].
  • These molecules share a common core structure with another type of high-affinity iron-binding molecule located in the cell wall of M. tuberculosis: the mycobactins [1].
  • The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore [6].
  • Modeling the postulated substrate, the N(epsilon)-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis [6].
  • Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin [2].
 

Chemical compound and disease context of Mycobactin

 

Biological context of Mycobactin

 

Anatomical context of Mycobactin

  • Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ [13].
  • The mean Z value (degrees required for the decimal reduction time to traverse one log cycle) was 8.6 degrees C. These five strains showed similar survival whether recovery was on Herrold's egg yolk medium containing mycobactin or by a radiometric culture method (BACTEC) [14].
  • In our experiments, these mycobactin-targeted lipid droplets were found in direct contact with phagosomes, poised for iron delivery [15].
  • Although M. paratuberculosis was not recovered from inoculated rabbits when fecal cultures were incubated three months in vitro, a slow-growing mycobactin-dependent form of Mycobacterium was recovered from feces and ileal tissue after incubation for 11-15 months [16].
 

Associations of Mycobactin with other chemical compounds

 

Gene context of Mycobactin

 

Analytical, diagnostic and therapeutic context of Mycobactin

References

  1. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. Gobin, J., Horwitz, M.A. J. Exp. Med. (1996) [Pubmed]
  2. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Quadri, L.E., Sello, J., Keating, T.A., Weinreb, P.H., Walsh, C.T. Chem. Biol. (1998) [Pubmed]
  3. Extracellular iron acquisition by mycobacteria: role of the exochelins and evidence against the participation of mycobactin. Macham, L.P., Ratledge, C., Nocton, J.C. Infect. Immun. (1975) [Pubmed]
  4. Characterization of Mycobacterium paratuberculosis by gas-liquid and thin-layer chromatography and rapid demonstration of mycobactin dependence using radiometric methods. Damato, J.J., Knisley, C., Collins, M.T. J. Clin. Microbiol. (1987) [Pubmed]
  5. Distribution and application of mycobactins for the characterization of species within the genus Rhodococcus. Hall, R.M., Ratledge, C. J. Gen. Microbiol. (1986) [Pubmed]
  6. The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis. Card, G.L., Peterson, N.A., Smith, C.A., Rupp, B., Schick, B.M., Baker, E.N. J. Biol. Chem. (2005) [Pubmed]
  7. Evaluation of growth promotion and inhibition from mycobactins and nonmycobacterial siderophores (Desferrioxamine and FR160) in Mycobacterium aurum. Bosne-David, S., Bricard, L., Ramiandrasoa, F., DeRoussent, A., Kunesch, G., Andremont, A. Antimicrob. Agents Chemother. (1997) [Pubmed]
  8. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. Harrison, A.J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R.J., Baker, E.N., Lott, J.S. J. Bacteriol. (2006) [Pubmed]
  9. Screening system for xenosiderophores as potential drug delivery agents in mycobacteria. Schumann, G., Möllmann, U. Antimicrob. Agents Chemother. (2001) [Pubmed]
  10. Nucleic acid hybridization studies of mycobactin-dependent mycobacteria. Yoshimura, H.H., Graham, D.Y. J. Clin. Microbiol. (1988) [Pubmed]
  11. Extensive genomic polymorphism within Mycobacterium avium. Semret, M., Zhai, G., Mostowy, S., Cleto, C., Alexander, D., Cangelosi, G., Cousins, D., Collins, D.M., van Soolingen, D., Behr, M.A. J. Bacteriol. (2004) [Pubmed]
  12. Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. LaMarca, B.B., Zhu, W., Arceneaux, J.E., Byers, B.R., Lundrigan, M.D. J. Bacteriol. (2004) [Pubmed]
  13. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Kahnert, A., Seiler, P., Stein, M., Bandermann, S., Hahnke, K., Mollenkopf, H., Kaufmann, S.H. Eur. J. Immunol. (2006) [Pubmed]
  14. Effect of turbulent-flow pasteurization on survival of Mycobacterium avium subsp. paratuberculosis added to raw milk. Pearce, L.E., Truong, H.T., Crawford, R.A., Yates, G.F., Cavaignac, S., de Lisle, G.W. Appl. Environ. Microbiol. (2001) [Pubmed]
  15. Mycobactin-mediated iron acquisition within macrophages. Luo, M., Fadeev, E.A., Groves, J.T. Nat. Chem. Biol. (2005) [Pubmed]
  16. Granulomatous enteritis following oral inoculation of newborn rabbits with Mycobacterium paratuberculosis of bovine origin. Mokresh, A.H., Butler, D.G. Can. J. Vet. Res. (1990) [Pubmed]
  17. Enhanced radiometric detection of Mycobacterium paratuberculosis by using filter-concentrated bovine fecal specimens. Collins, M.T., Kenefick, K.B., Sockett, D.C., Lambrecht, R.S., McDonald, J., Jorgensen, J.B. J. Clin. Microbiol. (1990) [Pubmed]
  18. Diagnosis of avian mycobacteriosis: comparison of culture, acid-fast stains, and polymerase chain reaction for the identification of Mycobacterium avium in experimentally inoculated Japanese quail (Coturnix coturnix japonica). Tell, L.A., Foley, J., Needham, M.L., Walker, R.L. Avian Dis. (2003) [Pubmed]
  19. Crystallization and preliminary X-ray crystallographic analysis of MbtI, a protein essential for siderophore biosynthesis in Mycobacterium tuberculosis. Harrison, A.J., Ramsay, R.J., Baker, E.N., Lott, J.S. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2005) [Pubmed]
  20. Inability to detect mycobactin in mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by mycobacteria in vivo. Lambrecht, R.S., Collins, M.T. Microb. Pathog. (1993) [Pubmed]
  21. Absence of mycobactin in Mycobacterium leprae; probably a microbe dependent microorganism implications. Kato, L. Indian journal of leprosy. (1985) [Pubmed]
  22. Mycobacterium leprae iron nutrition: bacterioferritin, mycobactin, exochelin and intracellular growth. Morrison, N.E. Int. J. Lepr. Other Mycobact. Dis. (1995) [Pubmed]
  23. The separation of the mycobactins from Mycobacterium smegmatis by using high-pressure liquid chromatography. Ratledge, C., Ewing, D.F. Biochem. J. (1978) [Pubmed]
  24. Mycobactin analysis as an aid for the identification of Mycobacterium fortuitum and Mycobacterium chelonae subspecies. Bosne, S., Lévy-Frébault, V.V. J. Clin. Microbiol. (1992) [Pubmed]
  25. Isolation of Mycobacterium avium subsp. paratuberculosis from free-ranging birds and mammals on livestock premises. Corn, J.L., Manning, E.J., Sreevatsan, S., Fischer, J.R. Appl. Environ. Microbiol. (2005) [Pubmed]
  26. Immunodiffusion analysis shows that Mycobacterium paratuberculosis and other mycobactin-dependent mycobacteria are variants of Mycobacterium avium. McIntyre, G., Stanford, J.L. J. Appl. Bacteriol. (1986) [Pubmed]
 
WikiGenes - Universities