The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Ariclaim     (3S)-N-methyl-3-naphthalen-1- yloxy-3...

Synonyms: Cymbalta, Xeristar, Yentreve, duloxetine, Yentreve (TN), ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cymbalta


Psychiatry related information on Cymbalta


High impact information on Cymbalta


Chemical compound and disease context of Cymbalta


Biological context of Cymbalta

  • In study 2, steady-state pharmacokinetics of duloxetine 40 mg once daily were determined in the presence and absence of steady-state paroxetine 20 mg once daily [12].
  • Consequently, we hypothesized that chronic duloxetine treatment, at doses producing serum levels within its therapeutic range, would affect both monoamine transporters dose-dependently, with a higher dose causing greater reductions of binding sites for both transporters [11].
  • Nevertheless, given that the highest dose of duloxetine increased supine systolic blood pressure, it is possible that it represents the threshold regimen for NE reuptake inhibition [18].
  • There was a significant increase for duloxetine compared with placebo for heart rate (1.6 vs. -0.6 beats per minute) and for systolic BP (1.0 vs. -1.2 mm Hg); the difference for diastolic BP (1.1 vs. 0.3) was not significant [19].
  • 4. Venlafaxine (100 and 300 mg kg-1, p.o.) and duloxetine (30 mg kg-1, p.o.) also significantly decreased food intake in the 2 and 8 h following drug administration [20].

Anatomical context of Cymbalta

  • Duloxetine or duloxetine plus pelvic floor muscle training (PFMT) were more effective in reducing the median IEF than PFMT alone or no treatment in women with SUI [3].
  • Antagonism of serotonin 5-HT1A receptors potentiates the increases in extracellular monoamines induced by duloxetine in rat hypothalamus [21].
  • In in vitro uptake experiments, duloxetine inhibited [3H]5-hydroxytryptamine (5-HT) and [3H]norepinephrine (NE) uptake in hippocampus slices of control rats with IC50 values of 28 and 46 nM, respectively [22].
  • Therefore, this study demonstrates that duloxetine increases serotonergic tone in a limbic forebrain structure and may therefore be effective in the treatment of depression [23].
  • Furthermore, when administered initially under irritated bladder conditions, duloxetine produced dose-dependent increases in bladder capacity (by 5-fold) and increased periurethral striated muscle EMG activity (by 8-fold) [24].

Associations of Cymbalta with other chemical compounds


Gene context of Cymbalta

  • Duloxetine is metabolized by CYP2D6 and CYP1A2, with moderate potential for interactions at CYP2D6 [30].
  • The next few years will determine whether CYP2D6 genotyping is beneficial for patients taking the new drugs aripiprazole, duloxetine, and atomoxetine [31].
  • Duloxetine reduced SERT density in the cortex by approximately 75% compared to control, with no effect on NET density in the hippocampus [32].
  • The lack of a detectable impact of duloxetine on TYR PD30 suggests that this may not be the most sensitive indirect measure of NE reuptake when assessing dual reuptake inhibitors [33].
  • CONCLUSIONS: The two dose regimens of duloxetine (80 mg QD and 60 mg BID) produced a REM sleep pattern comparable to that of most antidepressant medications [34].

Analytical, diagnostic and therapeutic context of Cymbalta


  1. A double-blind, multicenter trial comparing duloxetine with placebo in the treatment of fibromyalgia patients with or without major depressive disorder. Arnold, L.M., Lu, Y., Crofford, L.J., Wohlreich, M., Detke, M.J., Iyengar, S., Goldstein, D.J. Arthritis Rheum. (2004) [Pubmed]
  2. Does treatment with duloxetine for neuropathic pain impact glycemic control? Hardy, T., Sachson, R., Shen, S., Armbruster, M., Boulton, A.J. Diabetes Care (2007) [Pubmed]
  3. Duloxetine: in stress urinary incontinence. McCormack, P.L., Keating, G.M. Drugs (2004) [Pubmed]
  4. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Goldstein, D.J., Lu, Y., Detke, M.J., Lee, T.C., Iyengar, S. Pain (2005) [Pubmed]
  5. The effect of duloxetine on painful physical symptoms in depressed patients: do improvements in these symptoms result in higher remission rates? Fava, M., Mallinckrodt, C.H., Detke, M.J., Watkin, J.G., Wohlreich, M.M. The Journal of clinical psychiatry. (2004) [Pubmed]
  6. Duloxetine-induced ultrarapid cycling in an adolescent with bipolar depression. Desarkar, P., Bakhla, A., Sinha, V.K. Journal of clinical psychopharmacology (2007) [Pubmed]
  7. Exacerbation of PTSD symptoms with use of duloxetine. Deneys, M.L., Ahearn, E.P. The Journal of clinical psychiatry. (2006) [Pubmed]
  8. The dual transporter inhibitor duloxetine: a review of its preclinical pharmacology, pharmacokinetic profile, and clinical results in depression. Bymaster, F.P., Lee, T.C., Knadler, M.P., Detke, M.J., Iyengar, S. Curr. Pharm. Des. (2005) [Pubmed]
  9. Efficacy of duloxetine, a potent and balanced serotonergic and noradrenergic reuptake inhibitor, in inflammatory and acute pain models in rodents. Jones, C.K., Peters, S.C., Shannon, H.E. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  10. Duloxetine treatment of major depressive episodes in the course of psychotic disorders. Zink, M., Knopf, U., Mase, E., Kuwilsky, A., Deuschle, M. Pharmacopsychiatry (2006) [Pubmed]
  11. Effect of chronic administration of duloxetine on serotonin and norepinephrine transporter binding sites in rat brain. Gould, G.G., Javors, M.A., Frazer, A. Biol. Psychiatry (2007) [Pubmed]
  12. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Skinner, M.H., Kuan, H.Y., Pan, A., Sathirakul, K., Knadler, M.P., Gonzales, C.R., Yeo, K.P., Reddy, S., Lim, M., Ayan-Oshodi, M., Wise, S.D. Clin. Pharmacol. Ther. (2003) [Pubmed]
  13. The dual serotonin and noradrenaline reuptake inhibitor duloxetine for the treatment of interstitial cystitis: results of an observational study. van Ophoven, A., Hertle, L. J. Urol. (2007) [Pubmed]
  14. Analgesic effects of serotonergic, noradrenergic or dual reuptake inhibitors in the carrageenan test in rats: Evidence for synergism between serotonergic and noradrenergic reuptake inhibition. Jones, C.K., Eastwood, B.J., Need, A.B., Shannon, H.E. Neuropharmacology (2006) [Pubmed]
  15. Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Bomholt, S.F., Mikkelsen, J.D., Blackburn-Munro, G. Neuropharmacology (2005) [Pubmed]
  16. Pharmacological treatment of women awaiting surgery for stress urinary incontinence. Cardozo, L., Drutz, H.P., Baygani, S.K., Bump, R.C. Obstetrics and gynecology. (2004) [Pubmed]
  17. Depression and poor sleep: The effect of monoaminergic antidepressants in a pre-clinical model in rats. Sánchez, C., Brennum, L.T., Stórustovu, S.I., Kreilgård, M., Mørk, A. Pharmacol. Biochem. Behav. (2007) [Pubmed]
  18. Assessment of the serotonin and norepinephrine reuptake blocking properties of duloxetine in healthy subjects. Turcotte, J.E., Debonnel, G., de Montigny, C., Hébert, C., Blier, P. Neuropsychopharmacology (2001) [Pubmed]
  19. Cardiovascular profile of duloxetine, a dual reuptake inhibitor of serotonin and norepinephrine. Thase, M.E., Tran, P.V., Wiltse, C., Pangallo, B.A., Mallinckrodt, C., Detke, M.J. Journal of clinical psychopharmacology. (2005) [Pubmed]
  20. Comparison of the effects of sibutramine and other monoamine reuptake inhibitors on food intake in the rat. Jackson, H.C., Needham, A.M., Hutchins, L.J., Mazurkiewicz, S.E., Heal, D.J. Br. J. Pharmacol. (1997) [Pubmed]
  21. Antagonism of serotonin 5-HT1A receptors potentiates the increases in extracellular monoamines induced by duloxetine in rat hypothalamus. Engleman, E.A., Robertson, D.W., Thompson, D.C., Perry, K.W., Wong, D.T. J. Neurochem. (1996) [Pubmed]
  22. Blockade of the serotonin and norepinephrine uptake processes by duloxetine: in vitro and in vivo studies in the rat brain. Kasamo, K., Blier, P., De Montigny, C. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  23. Electrophysiological characterization of the effect of long-term duloxetine administration on the rat serotonergic and noradrenergic systems. Rueter, L.E., De Montigny, C., Blier, P. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  24. Effects of duloxetine, a combined serotonin and norepinephrine reuptake inhibitor, on central neural control of lower urinary tract function in the chloralose-anesthetized female cat. Thor, K.B., Katofiasc, M.A. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  25. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Bymaster, F.P., Dreshfield-Ahmad, L.J., Threlkeld, P.G., Shaw, J.L., Thompson, L., Nelson, D.L., Hemrick-Luecke, S.K., Wong, D.T. Neuropsychopharmacology (2001) [Pubmed]
  26. Comparison of duloxetine, escitalopram, and sertraline effects on cytochrome P450 2D6 function in healthy volunteers. Preskorn, S.H., Greenblatt, D.J., Flockhart, D., Luo, Y., Perloff, E.S., Harmatz, J.S., Baker, B., Klick-Davis, A., Desta, Z., Burt, T. Journal of clinical psychopharmacology (2007) [Pubmed]
  27. Duloxetine in the treatment of major depressive disorder: a double-blind clinical trial. Goldstein, D.J., Mallinckrodt, C., Lu, Y., Demitrack, M.A. The Journal of clinical psychiatry. (2002) [Pubmed]
  28. A dose-finding study of duloxetine based on serotonin transporter occupancy. Takano, A., Suzuki, K., Kosaka, J., Ota, M., Nozaki, S., Ikoma, Y., Tanada, S., Suhara, T. Psychopharmacology (Berl.) (2006) [Pubmed]
  29. Behavioral and electroencephalographic properties of duloxetine (LY248686), a reuptake inhibitor of norepinephrine and serotonin, in mice and rats. Katoh, A., Eigyo, M., Ishibashi, C., Naitoh, Y., Takeuchi, M., Ibii, N., Ikeda, M., Matsushita, A. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  30. Metabolism of the newest antidepressants: comparisons with related predecessors. Caccia, S. IDrugs : the investigational drugs journal. (2004) [Pubmed]
  31. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. de Leon, J., Armstrong, S.C., Cozza, K.L. Psychosomatics. (2006) [Pubmed]
  32. Chronic treatment with duloxetine is necessary for an anxiolytic-like response in the mouse zero maze: the role of the serotonin transporter. Troelsen, K.B., Nielsen, E.Ø., Mirza, N.R. Psychopharmacology (Berl.) (2005) [Pubmed]
  33. Duloxetine increases serotonin and norepinephrine availability in healthy subjects: a double-blind, controlled study. Chalon, S.A., Granier, L.A., Vandenhende, F.R., Bieck, P.R., Bymaster, F.P., Joliat, M.J., Hirth, C., Potter, W.Z. Neuropsychopharmacology (2003) [Pubmed]
  34. Comparative effects of duloxetine and desipramine on sleep EEG in healthy subjects. Chalon, S., Pereira, A., Lainey, E., Vandenhende, F., Watkin, J.G., Staner, L., Granier, L.A. Psychopharmacology (Berl.) (2005) [Pubmed]
WikiGenes - Universities