The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Davedax     (2S)-2-[(R)-(2- ethoxyphenoxy)-phenyl...

Synonyms: Norebox, Prolift, Reboxetine, Solvex, Vestra, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Reboxetine

 

Psychiatry related information on Reboxetine

 

High impact information on Reboxetine

 

Chemical compound and disease context of Reboxetine

 

Biological context of Reboxetine

  • The pharmacokinetics of reboxetine and its enantiomers were also investigated in the study [17].
  • As expected, heart rate increased from baseline (approximately 8-11 beats/min) at > or =8 mg reboxetine daily [18].
  • Increases in supine blood pressure after reboxetine administration may be interpreted as regression to the mean value and not caused by any treatment effect [17].
  • There was no significant difference between the maximum plasma concentration, mean time to maximum plasma concentration, plasma half-life, or area under the plasma concentration-time curve (AUC) of the R,R-enantiomer after reboxetine or R,R-enantiomer administration [17].
  • At rest, energy expenditure and substrate oxidation rates did not differ between reboxetine and placebo treatment [19].
 

Anatomical context of Reboxetine

  • Reboxetine administration did not affect expression of GAD65/67 mRNA in handled rats; however, administration to stressed animals reduced GAD67 (but not GAD65) mRNA in the medial amygdaloid nucleus, posteromedial bed nucleus of the stria terminalis, and dentate gyrus [20].
  • Doses of 10 mg/kg/day reboxetine through subcutaneous osmotic pumps for 2 days increased extracellular NA by 272% in the dorsal hippocampus (DH) of rats [21].
  • We previously reported that reboxetine and desipramine, two selective norepinephrine transporter (NET) blockers, at doses that maximally increase DA in the prefrontal cortex, do not increase DA in the parietal and occipital cortices [22].
  • On the contrary, reboxetine did not increase further the dopamine output produced by GBR 12909 in the nucleus accumbens core or in the dorsal caudate, areas lacking a consistent noradrenergic innervations [23].
  • The distribution of reboxetine appears to be limited to a fraction of the total body water due to its extensive (>97%) binding to plasma proteins [24].
 

Associations of Reboxetine with other chemical compounds

 

Gene context of Reboxetine

 

Analytical, diagnostic and therapeutic context of Reboxetine

References

  1. Reboxetine and hyponatremia. Ranieri, P., Franzoni, S., Trabucchi, M. N. Engl. J. Med. (2000) [Pubmed]
  2. Attenuation of olanzapine-induced weight gain with reboxetine in patients with schizophrenia: a double-blind, placebo-controlled study. Poyurovsky, M., Isaacs, I., Fuchs, C., Schneidman, M., Faragian, S., Weizman, R., Weizman, A. The American journal of psychiatry. (2003) [Pubmed]
  3. Effect of reboxetine on depression in Parkinson's disease patients. Lemke, M.R. The Journal of clinical psychiatry. (2002) [Pubmed]
  4. Double-blind, placebo-controlled study with reboxetine in inpatients with severe major depressive disorder. Versiani, M., Amin, M., Chouinard, G. Journal of clinical psychopharmacology. (2000) [Pubmed]
  5. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Müller, N., Schwarz, M.J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Müller, B., Spellmann, I., Hetzel, G., Maino, K., Kleindienst, N., Möller, H.J., Arolt, V., Riedel, M. Mol. Psychiatry (2006) [Pubmed]
  6. Are there differences in the symptoms that respond to a selective serotonin or norepinephrine reuptake inhibitor? Nelson, J.C., Portera, L., Leon, A.C. Biol. Psychiatry (2005) [Pubmed]
  7. Reboxetine, a selective norepinephrine reuptake inhibitor, is an effective and well-tolerated treatment for panic disorder. Versiani, M., Cassano, G., Perugi, G., Benedetti, A., Mastalli, L., Nardi, A., Savino, M. The Journal of clinical psychiatry. (2002) [Pubmed]
  8. Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review. Burrows, G.D., Maguire, K.P., Norman, T.R. The Journal of clinical psychiatry. (1998) [Pubmed]
  9. Stimulant and anticataplectic effects of reboxetine in patients with narcolepsy: a pilot study. Larrosa, O., de la Llave, Y., Bario, S., Granizo, J.J., Garcia-Borreguero, D. Sleep. (2001) [Pubmed]
  10. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Harmer, C.J., Shelley, N.C., Cowen, P.J., Goodwin, G.M. The American journal of psychiatry. (2004) [Pubmed]
  11. Regulation of editing and expression of glutamate alpha-amino-propionic-acid (AMPA)/kainate receptors by antidepressant drugs. Barbon, A., Popoli, M., La Via, L., Moraschi, S., Vallini, I., Tardito, D., Tiraboschi, E., Musazzi, L., Giambelli, R., Gennarelli, M., Racagni, G., Barlati, S. Biol. Psychiatry (2006) [Pubmed]
  12. Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Russo-Neustadt, A.A., Alejandre, H., Garcia, C., Ivy, A.S., Chen, M.J. Neuropsychopharmacology (2004) [Pubmed]
  13. Reboxetine versus fluvoxamine in the treatment of motor vehicle accident-related posttraumatic stress disorder: a double-blind, fixed-dosage, controlled trial. Spivak, B., Strous, R.D., Shaked, G., Shabash, E., Kotler, M., Weizman, A. Journal of clinical psychopharmacology. (2006) [Pubmed]
  14. Influence of reboxetine on salivary MHPG concentration and cognitive symptoms among patients with alcohol-related Korsakoff's syndrome. Reuster, T., Buechler, J., Winiecki, P., Oehler, J. Neuropsychopharmacology (2003) [Pubmed]
  15. No effect of reboxetine on plasma concentrations of clozapine, risperidone, and their active metabolites. Spina, E., Avenoso, A., Scordo, M.G., Ancione, M., Madia, A., Levita, A. Therapeutic drug monitoring. (2001) [Pubmed]
  16. Depression and poor sleep: The effect of monoaminergic antidepressants in a pre-clinical model in rats. Sánchez, C., Brennum, L.T., Stórustovu, S.I., Kreilgård, M., Mørk, A. Pharmacol. Biochem. Behav. (2007) [Pubmed]
  17. Hemodynamic effects of reboxetine in healthy male volunteers. Denolle, T., Pellizzoni, C., Jannuzzo, M.G., Poggesi, I. Clin. Pharmacol. Ther. (1999) [Pubmed]
  18. Lack of effect of reboxetine on cardiac repolarization. Fleishaker, J.C., Francom, S.F., Herman, B.D., Knuth, D.W., Azie, N.E. Clin. Pharmacol. Ther. (2001) [Pubmed]
  19. Norepinephrine transporter function and autonomic control of metabolism. Boschmann, M., Schroeder, C., Christensen, N.J., Tank, J., Krupp, G., Biaggioni, I., Klaus, S., Sharma, A.M., Luft, F.C., Jordan, J. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  20. Norepinephrine-gamma-aminobutyric acid (GABA) interaction in limbic stress circuits: effects of reboxetine on GABAergic neurons. Herman, J.P., Renda, A., Bodie, B. Biol. Psychiatry (2003) [Pubmed]
  21. Chronic reboxetine desensitizes terminal but not somatodendritic alpha2-adrenoceptors controlling noradrenaline release in the rat dorsal hippocampus. Parini, S., Renoldi, G., Battaglia, A., Invernizzi, R.W. Neuropsychopharmacology (2005) [Pubmed]
  22. Differential alpha-mediated inhibition of dopamine and noradrenaline release in the parietal and occipital cortex following noradrenaline transporter blockade. Valentini, V., Cacciapaglia, F., Frau, R., Di Chiara, G. J. Neurochem. (2006) [Pubmed]
  23. Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. Carboni, E., Silvagni, A., Vacca, C., Di Chiara, G. J. Neurochem. (2006) [Pubmed]
  24. Clinical pharmacokinetics of reboxetine, a selective norepinephrine reuptake inhibitor for the treatment of patients with depression. Fleishaker, J.C. Clinical pharmacokinetics. (2000) [Pubmed]
  25. Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Wong, E.H., Sonders, M.S., Amara, S.G., Tinholt, P.M., Piercey, M.F., Hoffmann, W.P., Hyslop, D.K., Franklin, S., Porsolt, R.D., Bonsignori, A., Carfagna, N., McArthur, R.A. Biol. Psychiatry (2000) [Pubmed]
  26. Ketoconazole inhibits the clearance of the enantiomers of the antidepressant reboxetine in humans. Herman, B.D., Fleishaker, J.C., Brown, M.T. Clin. Pharmacol. Ther. (1999) [Pubmed]
  27. Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus. Szabo, S.T., Blier, P. Neuropsychopharmacology (2001) [Pubmed]
  28. Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S,S) and (R,R) enantiomers of reboxetine analogs ([11C]methylreboxetine, 3-Cl-[11C]methylreboxetine and [18F]fluororeboxetine), (R)-[11C]nisoxetine, [11C]oxaprotiline and [11C]lortalamine. Ding, Y.S., Lin, K.S., Logan, J., Benveniste, H., Carter, P. J. Neurochem. (2005) [Pubmed]
  29. Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Wienkers, L.C., Allievi, C., Hauer, M.J., Wynalda, M.A. Drug Metab. Dispos. (1999) [Pubmed]
  30. Reboxetine and cytochrome P450--comparison with paroxetine treatment in humans. Kuhn, U.D., Kirsch, M., Merkel, U., Eberhardt, A.M., Wenda, B., Maurer, I., Härtter, S., Hiemke, C., Volz, H.P., Balogh, A. International journal of clinical pharmacology and therapeutics (2007) [Pubmed]
  31. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Tiraboschi, E., Tardito, D., Kasahara, J., Moraschi, S., Pruneri, P., Gennarelli, M., Racagni, G., Popoli, M. Neuropsychopharmacology (2004) [Pubmed]
  32. The efficacy of reboxetine in preventing and reverting a condition of escape deficit in rats. Grappi, S., Nanni, G., Leggio, B., Rauggi, R., Scheggi, S., Masi, F., Gambarana, C. Biol. Psychiatry (2003) [Pubmed]
  33. The antidepressant efficacy of reboxetine in patients with severe depression. Montgomery, S., Ferguson, J.M., Schwartz, G.E. Journal of clinical psychopharmacology. (2003) [Pubmed]
  34. Separation of reboxetine enantiomers by means of capillary electrophoresis. Raggi, M.A., Mandrioli, R., Sabbioni, C., Parenti, C., Cannazza, G., Fanali, S. Electrophoresis (2002) [Pubmed]
  35. Residual symptoms in depressed patients after treatment with fluoxetine or reboxetine. Nelson, J.C., Portera, L., Leon, A.C. The Journal of clinical psychiatry. (2005) [Pubmed]
 
WikiGenes - Universities