The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CAPROLACTONE     oxepan-2-one

Synonyms: E-Caprolactone, Placcel M, PubChem15924, CPD-101, SureCN10850, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Placcel M

 

Psychiatry related information on Placcel M

  • A limit for MPEG initiator esterification in lipase-catalyzed CL polymerization was observed and was explained by preferential reaction of PCL propagation over MPEG esterification at long reaction times and low MPEG concentrations [6].
 

High impact information on Placcel M

  • The complexes Fe2(OCHPh2)6 and L2FeOR (R = Et or CHPh2, L = N,N'-bis(trimethylsilyl)benzamidinate) were structurally characterized, and comparative studies of the behavior of those compounds comprising the same alkoxide (Ph2HCO-) in polymerizations of -caprolactone (CL) and D,L-lactide (LA) were performed [7].
  • We established histopathologic and neurophysiologic approaches to examine whether different designs of polycaprolactone-engineered nerve conduits (hollow vs. laminated) could promote nerve regeneration as autologous grafts after transection of sciatic nerves [8].
  • Chinese hamster ovary (CHO) cells transfected with the plasmid hANP-cDNA were encapsulated in biocompatible polycaprolactone capsules for intraperitoneal implantation into two-kidney, one-clip (2K1C) hypertensive rats [9].
  • CHO cells transfected with the plasmid CMV-cANP were encapsulated in biocompatible polycaprolactone (PCL) capsules, and then the PCL capsules were implanted into 2K1C hypertensive rats intraperitoneally [10].
  • The purpose of this work was to assess the immunogenicity of a single nasal or oral administration of recombinant 28-kDa glutathione S-transferase of Schistosoma mansoni (rSm28GST) entrapped by poly(lactide-co-glycolide) (PLG)- or polycaprolactone (PCL)-biodegradable microparticles [11].
 

Chemical compound and disease context of Placcel M

 

Biological context of Placcel M

 

Anatomical context of Placcel M

 

Associations of Placcel M with other chemical compounds

 

Gene context of Placcel M

  • Pooled 10-week sera from mice receiving PLG microparticles by the nasal or oral route neutralized the rSm28GST enzymatic activity, whereas sera of mice receiving either PCL microparticles, free rSm28GST, or empty microparticles inefficiently neutralized this enzymatic activity [11].
  • In vitro studies showed that the biodegradable polymer poly (Ghlr epsilon epsilon-caprolactone) (PCL) released BMOV in a sustained manner with rates of drug release increasing with increased loading of the drug in the polymer [29].
  • Light, environmental scanning electron, and confocal laser microscopy as well as immunohistochemistry showed cell proliferation and extracellular matrix production on the polycaprolactone surface in the 1st culturing week [30].
  • The implanted PLCL scaffolds displayed a slow degradation on time, where caprolactone units were faster degraded than lactide did [31].
  • However, there was a disproportionate synthesis of CE per mg of total protein on PS and TDI/PCL/ED whereas on PTMO there was not [32].
 

Analytical, diagnostic and therapeutic context of Placcel M

References

  1. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Pitt, C.G., Gratzl, M.M., Kimmel, G.L., Surles, J., Schindler, A. Biomaterials (1981) [Pubmed]
  2. Treatment of osteomyelitis with local antibiotics delivered via bioabsorbable polymer. Rutledge, B., Huyette, D., Day, D., Anglen, J. Clin. Orthop. Relat. Res. (2003) [Pubmed]
  3. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Walton, A.Z., Stewart, J.D. Biotechnol. Prog. (2002) [Pubmed]
  4. Polycaprolactone depolymerase produced by the bacterium Alcaligenes faecalis. Oda, Y., Oida, N., Urakami, T., Tonomura, K. FEMS Microbiol. Lett. (1997) [Pubmed]
  5. Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. Labuzek, S., Radecka, I. J. Appl. Microbiol. (2001) [Pubmed]
  6. Mechanistic limitations in the synthesis of polyesters by lipase-catalyzed ring-opening polymerization. Panova, A.A., Kaplan, D.L. Biotechnol. Bioeng. (2003) [Pubmed]
  7. Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: single vs multiple site catalysis. O'Keefe, B.J., Breyfogle, L.E., Hillmyer, M.A., Tolman, W.B. J. Am. Chem. Soc. (2002) [Pubmed]
  8. Reinnervation of muscular targets by nerve regeneration through guidance conduits. Chiang, H.Y., Chien, H.F., Shen, H.H., Yang, J.D., Chen, Y.H., Chen, J.H., Hsieh, S.T. J. Neuropathol. Exp. Neurol. (2005) [Pubmed]
  9. Circadian renal rhythms influenced by implanted encapsulated hANP-producing cells in Goldblatt hypertensive rats. Chen, L.G., Wang, Z.R., Wan, C.M., Xiao, J., Guo, L., Guo, H.L., Cornélissen, G., Halberg, F. Gene Ther. (2004) [Pubmed]
  10. Encapsulated transgene cells attenuate hypertension, cardiac hypertrophy and enhance renal function in Goldblatt hypertensive rats. Chen, L.G., Wang, Z.R., Wan, C.M., Chao, L., Chao, J., Xing, H.Y. The journal of gene medicine. (2004) [Pubmed]
  11. Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Baras, B., Benoit, M.A., Dupré, L., Poulain-Godefroy, O., Schacht, A.M., Capron, A., Gillard, J., Riveau, G. Infect. Immun. (1999) [Pubmed]
  12. Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Walton, A.Z., Stewart, J.D. Biotechnol. Prog. (2004) [Pubmed]
  13. Microflora cultivable from minocycline strips placed in persisting periodontal pockets. Leung, W.K., Jin, L., Yau, J.Y., Sun, Q., Corbet, E.F. Arch. Oral Biol. (2005) [Pubmed]
  14. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Jaeger, K.E., Steinbüchel, A., Jendrossek, D. Appl. Environ. Microbiol. (1995) [Pubmed]
  15. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Fujihara, K., Kotaki, M., Ramakrishna, S. Biomaterials (2005) [Pubmed]
  16. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Vance, R.J., Miller, D.C., Thapa, A., Haberstroh, K.M., Webster, T.J. Biomaterials (2004) [Pubmed]
  17. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz, J.T., Teoh, S.H., Lim, T.C., Endres, M., Lam, C.X., Hutmacher, D.W. Tissue engineering. (2003) [Pubmed]
  18. Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Park, Y.J., Lee, J.Y., Chang, Y.S., Jeong, J.M., Chung, J.K., Lee, M.C., Park, K.B., Lee, S.J. Biomaterials (2002) [Pubmed]
  19. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Marletta, G., Ciapetti, G., Satriano, C., Pagani, S., Baldini, N. Biomaterials (2005) [Pubmed]
  20. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Venugopal, J., Ramakrishna, S. Tissue engineering. (2005) [Pubmed]
  21. Placement of covered self-expanding metallic stents in the common bile duct: a feasibility study. Yasumori, K., Mahmoudi, N., Wright, K.C., Wallace, S., Gianturco, C. Journal of vascular and interventional radiology : JVIR. (1993) [Pubmed]
  22. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S. Biomaterials (2005) [Pubmed]
  23. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Williamson, M.R., Woollard, K.J., Griffiths, H.R., Coombes, A.G. Tissue engineering. (2006) [Pubmed]
  24. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Zhang, Y., Zhuo, R.X. Biomaterials (2005) [Pubmed]
  25. Characterization of an FMN-containing cyclohexanone monooxygenase from a cyclohexane-grown Xanthobacter sp. Trower, M.K., Buckland, R.M., Griffin, M. Eur. J. Biochem. (1989) [Pubmed]
  26. Supporting, microporous, elastomeric, degradable prostheses to improve the arterialization of autologous vein grafts. Hinrichs, W.L., Zweep, H.P., Satoh, S., Feijen, J., Wildevuur, C.R. Biomaterials (1994) [Pubmed]
  27. Poly(D,L-lactide/epsilon-caprolactone)/hydroxyapatite composites. Ural, E., Kesenci, K., Fambri, L., Migliaresi, C., Piskin, E. Biomaterials (2000) [Pubmed]
  28. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Shao, X., Goh, J.C., Hutmacher, D.W., Lee, E.H., Zigang, G. Tissue Eng. (2006) [Pubmed]
  29. A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Jackson, J.K., Min, W., Cruz, T.F., Cindric, S., Arsenault, L., Von Hoff, D.D., Degan, D., Hunter, W.L., Burt, H.M. Br. J. Cancer (1997) [Pubmed]
  30. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H., Tan, K.C. J. Biomed. Mater. Res. (2001) [Pubmed]
  31. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Jeong, S.I., Kim, B.S., Kang, S.W., Kwon, J.H., Lee, Y.M., Kim, S.H., Kim, Y.H. Biomaterials (2004) [Pubmed]
  32. Differential synthesis of cholesterol esterase by monocyte-derived macrophages cultured on poly(ether or ester)-based poly(urethane)s. Labow, R.S., Meek, E., Santerre, J.P. J. Biomed. Mater. Res. (1998) [Pubmed]
  33. A novel degradable polycaprolactone networks for tissue engineering. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike, T., Cho, C.S. Biomaterials (2003) [Pubmed]
  34. The application of microspheres from the copolymers of lactide and epsilon-caprolactone to the controlled release of steroids. Buntner, B., Nowak, M., Kasperczyk, J., Ryba, M., Grieb, P., Walski, M., Dobrzyñski, P., Bero, M. Journal of controlled release : official journal of the Controlled Release Society. (1998) [Pubmed]
  35. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Zhu, Y., Gao, C., Shen, J. Biomaterials (2002) [Pubmed]
 
WikiGenes - Universities