The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PLK2  -  polo-like kinase 2

Homo sapiens

Synonyms: PLK-2, Polo-like kinase 2, SNK, Serine/threonine-protein kinase PLK2, Serine/threonine-protein kinase SNK, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PLK2


High impact information on PLK2


Chemical compound and disease context of PLK2


Biological context of PLK2


Anatomical context of PLK2


Associations of PLK2 with chemical compounds

  • In COS cells, Plk2 and Plk3 interact with spine-associated Rap guanosine triphosphatase-activating protein (SPAR), a regulator of actin dynamics and dendritic spine morphology, leading to its degradation through the ubiquitin-proteasome system [14].
  • Although transcription of the SNK gene was also regulated by tunicamycin, etoposide, or staurosporine, FK506 did not show any effects on these regulations [15].
  • Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide [16].
  • Small interfering RNA (siRNA)-mediated Snk/Plk2 silencing in the presence of the mitotic poisons paclitaxel (Taxol) or nocodazole significantly increased apoptosis, similar to p53 mutations, which confer paclitaxel sensitivity [17].
  • Influence of chk1 and plk1 silencing on radiation- or cisplatin-induced cytotoxicity in human malignant cells [18].

Regulatory relationships of PLK2

  • The vector-based RNAi approach was used to evaluate the role of the p53 pathway in Plk1 depletion-induced apoptosis in cancer cells with different p53 backgrounds [19].

Other interactions of PLK2

  • Using the yeast two-hybrid screening, we identify SNK as a candidate substrate of hVPS18 [11].
  • Epigenetic inactivation of Plk2 via aberrant CpG methylation in the transcriptional regulatory elements of the gene is a common event in B cell neoplasia, whereas epigenetic inactivation of Plk3 is exceedingly rare in lymphomas [2].
  • The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases [20].
  • Induction of Plk2 in hippocampal neurons eliminates SPAR protein, depletes a core postsynaptic scaffolding molecule (PSD-95), and causes loss of mature dendritic spines and synapses [14].

Analytical, diagnostic and therapeutic context of PLK2

  • Systematic immunoprecipitation analyses using a series of deletion mutants of p53 revealed that a sequence-specific DNA-binding region of p53 is required and sufficient for the physical interaction with Plk1 [3].
  • The expression of Plk1 was analyzed by reverse transcriptional PCR and a tissue array using immunohistochemical staining method in gastric adenocarcinoma tissues [13].
  • Interestingly, in a human xenograft experiment using MDA-MB-435 cells, the combination of Plk1 ASOs with paclitaxel led to synergistic reduction of tumor growth after 3 weeks of treatment compared with either agent alone [9].
  • METHODS: PLK1 expression was determined in 160 gastric carcinoma patients by immunohistochemistry and compared with p53 expression and the proliferating cell nuclear antigen-labeling index (PCNA-LI) to evaluate the effect of PLK1 on tumor progression [21].
  • We have generated mice deficient in Plk2 by gene targeting [22].


  1. Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Syed, N., Smith, P., Sullivan, A., Spender, L.C., Dyer, M., Karran, L., O'Nions, J., Allday, M., Hoffmann, I., Crawford, D., Griffin, B., Farrell, P.J., Crook, T. Blood (2006) [Pubmed]
  2. Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for Polo-like kinase 2 but not Polo-like kinase 3. Smith, P., Syed, N., Crook, T. Cell Cycle (2006) [Pubmed]
  3. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M., Nakagawara, A. J. Biol. Chem. (2004) [Pubmed]
  4. Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Incassati, A., Patel, D., McCance, D.J. Oncogene (2006) [Pubmed]
  5. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Oshimori, N., Ohsugi, M., Yamamoto, T. Nat. Cell Biol. (2006) [Pubmed]
  6. Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. Spänkuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M., Strebhardt, K. J. Natl. Cancer Inst. (2002) [Pubmed]
  7. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. Meraldi, P., Honda, R., Nigg, E.A. EMBO J. (2002) [Pubmed]
  8. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. Lane, H.A., Nigg, E.A. J. Cell Biol. (1996) [Pubmed]
  9. Down-regulation of Polo-like kinase 1 elevates drug sensitivity of breast cancer cells in vitro and in vivo. Spänkuch, B., Heim, S., Kurunci-Csacsko, E., Lindenau, C., Yuan, J., Kaufmann, M., Strebhardt, K. Cancer Res. (2006) [Pubmed]
  10. Utilization of Drosophila eye to probe the functions of two mammalian serine/threonine kinases, Snk and HsHPK. Liu, M.A., Huang, A.M., Chou, C.K., Liaw, G.J., Wu, C.W. J. Biomed. Sci. (2001) [Pubmed]
  11. Ubiquitylation and degradation of serum-inducible kinase by hVPS18, a RING-H2 type ubiquitin ligase. Yogosawa, S., Hatakeyama, S., Nakayama, K.I., Miyoshi, H., Kohsaka, S., Akazawa, C. J. Biol. Chem. (2005) [Pubmed]
  12. Polo-like Kinases Inhibited by Wortmannin: LABELING SITE AND DOWNSTREAM EFFECTS. Liu, Y., Jiang, N., Wu, J., Dai, W., Rosenblum, J.S. J. Biol. Chem. (2007) [Pubmed]
  13. Oncogenic effect of Polo-like kinase 1 expression in human gastric carcinomas. Jang, Y.J., Kim, Y.S., Kim, W.H. Int. J. Oncol. (2006) [Pubmed]
  14. Polo-like kinases in the nervous system. Seeburg, D.P., Pak, D., Sheng, M. Oncogene (2005) [Pubmed]
  15. Protective effect of FK506 against apoptosis of SH-SY5Y cells correlates with regulation of the serum inducible kinase gene. Muramoto, M., Yamazaki, T., Morikawa, N., Okitsu, O., Nagashima, T., Oe, T., Nishimura, S., Kita, Y. Biochem. Pharmacol. (2005) [Pubmed]
  16. Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide. Ji, J.H., Jang, Y.J. J. Biochem. Mol. Biol. (2006) [Pubmed]
  17. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Burns, T.F., Fei, P., Scata, K.A., Dicker, D.T., El-Deiry, W.S. Mol. Cell. Biol. (2003) [Pubmed]
  18. Influence of chk1 and plk1 silencing on radiation- or cisplatin-induced cytotoxicity in human malignant cells. Gao, Q., Huang, X., Tang, D., Cao, Y., Chen, G., Lu, Y., Zhuang, L., Wang, S., Xu, G., Zhou, J., Ma, D. Apoptosis (2006) [Pubmed]
  19. Normal cells, but not cancer cells, survive severe Plk1 depletion. Liu, X., Lei, M., Erikson, R.L. Mol. Cell. Biol. (2006) [Pubmed]
  20. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Winkles, J.A., Alberts, G.F. Oncogene (2005) [Pubmed]
  21. Expression of polo-like kinase 1 (PLK1) protein predicts the survival of patients with gastric carcinoma. Kanaji, S., Saito, H., Tsujitani, S., Matsumoto, S., Tatebe, S., Kondo, A., Ozaki, M., Ito, H., Ikeguchi, M. Oncology (2006) [Pubmed]
  22. Role of Plk2 (Snk) in mouse development and cell proliferation. Ma, S., Charron, J., Erikson, R.L. Mol. Cell. Biol. (2003) [Pubmed]
WikiGenes - Universities