The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Osteopetrosis


Psychiatry related information on Osteopetrosis


High impact information on Osteopetrosis

  • We also identified CLCN7 mutations in a patient with human infantile malignant osteopetrosis [8].
  • Here we report hypomorphic mutations in the gene IKBKG in 12 males with EDA-ID from 8 kindreds, and 2 patients with a related and hitherto unrecognized syndrome of EDA-ID with osteopetrosis and lymphoedema (OL-EDA-ID) [9].
  • Our data indicate that mutations in TCIRG1 are a frequent cause of autosomal recessive osteopetrosis in humans [10].
  • Moreover, a transgene expressing Fra-1 rescues the osteopetrosis of c-Fos-mutant mice in vivo [11].
  • Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification [12].

Chemical compound and disease context of Osteopetrosis


Biological context of Osteopetrosis


Anatomical context of Osteopetrosis


Gene context of Osteopetrosis


Analytical, diagnostic and therapeutic context of Osteopetrosis


  1. Molecular structure and physiological function of chloride channels. Jentsch, T.J., Stein, V., Weinreich, F., Zdebik, A.A. Physiol. Rev. (2002) [Pubmed]
  2. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Sly, W.S., Whyte, M.P., Sundaram, V., Tashian, R.E., Hewett-Emmett, D., Guibaud, P., Vainsel, M., Baluarte, H.J., Gruskin, A., Al-Mosawi, M. N. Engl. J. Med. (1985) [Pubmed]
  3. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Tassabehji, M., Newton, V.E., Read, A.P. Nat. Genet. (1994) [Pubmed]
  4. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Wada, T., Nakashima, T., Oliveira-dos-Santos, A.J., Gasser, J., Hara, H., Schett, G., Penninger, J.M. Nat. Med. (2005) [Pubmed]
  5. Ion channels: function unravelled by dysfunction. Jentsch, T.J., Hübner, C.A., Fuhrmann, J.C. Nat. Cell Biol. (2004) [Pubmed]
  6. Genetic diseases of acid-base transporters. Alper, S.L. Annu. Rev. Physiol. (2002) [Pubmed]
  7. Update on the biologic effects of macrophage colony-stimulating factor. Flanagan, A.M., Lader, C.S. Curr. Opin. Hematol. (1998) [Pubmed]
  8. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Kornak, U., Kasper, D., Bösl, M.R., Kaiser, E., Schweizer, M., Schulz, A., Friedrich, W., Delling, G., Jentsch, T.J. Cell (2001) [Pubmed]
  9. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Döffinger, R., Smahi, A., Bessia, C., Geissmann, F., Feinberg, J., Durandy, A., Bodemer, C., Kenwrick, S., Dupuis-Girod, S., Blanche, S., Wood, P., Rabia, S.H., Headon, D.J., Overbeek, P.A., Le Deist, F., Holland, S.M., Belani, K., Kumararatne, D.S., Fischer, A., Shapiro, R., Conley, M.E., Reimund, E., Kalhoff, H., Abinun, M., Munnich, A., Israël, A., Courtois, G., Casanova, J.L. Nat. Genet. (2001) [Pubmed]
  10. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Frattini, A., Orchard, P.J., Sobacchi, C., Giliani, S., Abinun, M., Mattsson, J.P., Keeling, D.J., Andersson, A.K., Wallbrandt, P., Zecca, L., Notarangelo, L.D., Vezzoni, P., Villa, A. Nat. Genet. (2000) [Pubmed]
  11. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Matsuo, K., Owens, J.M., Tonko, M., Elliott, C., Chambers, T.J., Wagner, E.F. Nat. Genet. (2000) [Pubmed]
  12. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Li, Y.P., Chen, W., Liang, Y., Li, E., Stashenko, P. Nat. Genet. (1999) [Pubmed]
  13. Elevated levels of creatine kinase BB isoenzyme in three patients with adult osteopetrosis. Yoneyama, T., Fowler, H.L., Pendleton, J.W., Sforza, P.P., Lui, C.Y., Iranmanesh, A., Gerard, R.D. N. Engl. J. Med. (1989) [Pubmed]
  14. Calcitriol for congenital osteopetrosis. Blazar, B.R., Fallon, M.D., Teitelbaum, S.L., Ramsay, N.K., Brown, D.M. N. Engl. J. Med. (1984) [Pubmed]
  15. Successful bone-marrow transplantation for infantile malignant osteopetrosis. Coccia, P.F., Krivit, W., Cervenka, J., Clawson, C., Kersey, J.H., Kim, T.H., Nesbit, M.E., Ramsay, N.K., Warkentin, P.I., Teitelbaum, S.L., Kahn, A.J., Brown, D.M. N. Engl. J. Med. (1980) [Pubmed]
  16. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Hayman, A.R., Jones, S.J., Boyde, A., Foster, D., Colledge, W.H., Carlton, M.B., Evans, M.J., Cox, T.M. Development (1996) [Pubmed]
  17. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Xing, L., Venegas, A.M., Chen, A., Garrett-Beal, L., Boyce, B.F., Varmus, H.E., Schwartzberg, P.L. Genes Dev. (2001) [Pubmed]
  18. Osteopenia and decreased bone formation in osteonectin-deficient mice. Delany, A.M., Amling, M., Priemel, M., Howe, C., Baron, R., Canalis, E. J. Clin. Invest. (2000) [Pubmed]
  19. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. Horne, W.C., Neff, L., Chatterjee, D., Lomri, A., Levy, J.B., Baron, R. J. Cell Biol. (1992) [Pubmed]
  20. Polymorphic gene for human carbonic anhydrase II: a molecular disease marker located on chromosome 8. Venta, P.J., Shows, T.B., Curtis, P.J., Tashian, R.E. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  21. Mice lacking c-fos have normal hematopoietic stem cells but exhibit altered B-cell differentiation due to an impaired bone marrow environment. Okada, S., Wang, Z.Q., Grigoriadis, A.E., Wagner, E.F., von Rüden, T. Mol. Cell. Biol. (1994) [Pubmed]
  22. Lymphoid leukosis in chickens chemically bursectomized and subsequently inoculated with bursa cells. Purchase, H.G., Gilmour, D.G. J. Natl. Cancer Inst. (1975) [Pubmed]
  23. Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968-1985. Fischer, A., Griscelli, C., Friedrich, W., Kubanek, B., Levinsky, R., Morgan, G., Vossen, J., Wagemaker, G., Landais, P. Lancet (1986) [Pubmed]
  24. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Dai, X.M., Zong, X.H., Sylvestre, V., Stanley, E.R. Blood (2004) [Pubmed]
  25. Effects of granulocyte/macrophage colony-stimulating factor on the development and differentiation of CD5-positive macrophages and their potential derivation from a CD5-positive B-cell lineage in mice. Takahashi, K., Miyakawa, K., Wynn, A.A., Nakayama, K., Myint, Y.Y., Naito, M., Shultz, L.D., Tominaga, A., Takatsu, K. Am. J. Pathol. (1998) [Pubmed]
  26. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Iotsova, V., Caamaño, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. Nat. Med. (1997) [Pubmed]
  27. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T., Cao, Z., Penninger, J.M., Paige, C.J., Lacey, D.L., Dunstan, C.R., Boyle, W.J., Goeddel, D.V., Mak, T.W. Genes Dev. (1999) [Pubmed]
  28. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. Niida, S., Kaku, M., Amano, H., Yoshida, H., Kataoka, H., Nishikawa, S., Tanne, K., Maeda, N., Nishikawa, S., Kodama, H. J. Exp. Med. (1999) [Pubmed]
  29. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Motyckova, G., Weilbaecher, K.N., Horstmann, M., Rieman, D.J., Fisher, D.Z., Fisher, D.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. A splice junction mutation in intron 2 of the carbonic anhydrase II gene of osteopetrosis patients from Arabic countries. Hu, P.Y., Roth, D.E., Skaggs, L.A., Venta, P.J., Tashian, R.E., Guibaud, P., Sly, W.S. Hum. Mutat. (1992) [Pubmed]
  31. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. Van Wesenbeeck, L., Odgren, P.R., Coxon, F.P., Frattini, A., Moens, P., Perdu, B., MacKay, C.A., Van Hul, E., Timmermans, J.P., Vanhoenacker, F., Jacobs, R., Peruzzi, B., Teti, A., Helfrich, M.H., Rogers, M.J., Villa, A., Van Hul, W. J. Clin. Invest. (2007) [Pubmed]
  32. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., Wagner, E.F. Science (1994) [Pubmed]
  33. Retrovirus-induced osteopetrosis in mice. Effects of viral infection on osteogenic differentiation in skeletoblast cell cultures. Schmidt, J., Casser-Bette, M., Murray, A.B., Luz, A., Erfle, V. Am. J. Pathol. (1987) [Pubmed]
  34. Bone marrow scintigraphy with technetium-99m anti-NCA-95 to monitor therapy in malignant osteopetrosis. Thelen, M.H., Eschmann, S.M., Moll-Kotowski, M., Dopfer, R., Bares, R. J. Nucl. Med. (1998) [Pubmed]
  35. Genetic localization and transmission of the mouse osteopetrotic grey-lethal mutation. Vacher, J., Bernard, H. Mamm. Genome (1999) [Pubmed]
  36. Polyostotic hyperostosis associated with oviductal tumor in a cockatiel. Stauber, E., Papageorges, M., Sande, R., Ward, L. J. Am. Vet. Med. Assoc. (1990) [Pubmed]
WikiGenes - Universities