The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

KLRB1  -  killer cell lectin-like receptor subfamily...

Homo sapiens

Synonyms: C-type lectin domain family 5 member B, CD161, CLEC5B, HNKR-P1a, Killer cell lectin-like receptor subfamily B member 1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of KLRB1

 

High impact information on KLRB1

  • This structure may serve as a prototype for other NK cell receptors such as Ly-49, NKR-P1, and CD69 [5].
  • Two subsets of NK cells were identified in these cultures: one expressed both NKR-P1A and CD56 and, in variable proportions, all other NK cell differentiation antigens; the second subset expressed only NKR-P1A and, unlike the former, was not cytotoxic [6].
  • This expression was paralleled by their ability to respond to both T cell receptor and NK receptor engagements [7].
  • Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus [8].
  • The formation of complexes between soluble, recombinant molecules indicates that HLA-Cw4 is sufficient for specific ligation by the NK receptor and that neither glycoprotein requires carbohydrate for the interaction [9].
 

Biological context of KLRB1

 

Anatomical context of KLRB1

 

Associations of KLRB1 with chemical compounds

  • Finally, mAb-mediated cross-linking of NKRP1A molecules in CD4+ T lymphocytes induced the up-regulation of the lymphocyte function-associated antigen 1 Mg(2+)-binding site as well as beta 1 and beta 2 integrin chains [16].
  • Crosslinking of NKR-P1 on the cell surface induced transient in vivo tyrosine phosphorylation of cellular protein substrates [17].
  • CHX treatment resulted also in an overexpression of AICL, LLT1, and CD161/NKR-P1A mRNAs [18].
  • Exposure to the dihydropyridine drug nifedipine, which binds L-type calcium channels blocking calcium influx, prevents two dendritic cell functions that are dependent on extracellular calcium entry: apoptotic body engulfment and interleukin-12 production induced by cross-linking of the surface lectin NKRP1A [19].
  • In conformity with the marked neuraminidase enhancement of NK-mediated cytolysis of the butyrate-induced targets, these NKR cells were associated with significantly enhanced levels of neuraminidase-accessible sialic acid compared to the NKS parental K562 cell line [20].
 

Physical interactions of KLRB1

 

Regulatory relationships of KLRB1

  • Moreover, LLT1 on target cells can inhibit NK cytotoxicity via interactions with NKR-P1A [14].
  • Conversely, LLT1/CD161 interaction in the presence of a TCR signal enhanced IFN-gamma production by T cells [13].
  • Almost all of the NKR-P1A(+) T cells in the human liver expressed CD69, suggesting that they were activated [1].
  • Investigation of NK receptor expression showed that most CD56+ cells expressed membrane CD94 and NKG2-A mRNA [21].
  • These data suggested that FK506 did not inhibit cytolytic activities of inhibitory NKR-expressing T cells and that there was a possibility of cytolytic activities being enhanced through the induction of cytotoxic molecules such as NKG2D and granzyme during a seven-day culture with FK506 [22].
 

Other interactions of KLRB1

 

Analytical, diagnostic and therapeutic context of KLRB1

References

  1. CD8(+)NKR-P1A (+)T cells preferentially accumulate in human liver. Ishihara, S., Nieda, M., Kitayama, J., Osada, T., Yabe, T., Ishikawa, Y., Nagawa, H., Muto, T., Juji, T. Eur. J. Immunol. (1999) [Pubmed]
  2. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. Speiser, D.E., Pittet, M.J., Valmori, D., Dunbar, R., Rimoldi, D., Liénard, D., MacDonald, H.R., Cerottini, J.C., Cerundolo, V., Romero, P. J. Exp. Med. (1999) [Pubmed]
  3. Expression of CD94/NKG2A and killer immunoglobulin-like receptors in NK cells and a subset of extranodal cytotoxic T-cell lymphomas. Haedicke, W., Ho, F.C., Chott, A., Moretta, L., Rüdiger, T., Ott, G., Müller-Hermelink, H.K. Blood (2000) [Pubmed]
  4. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Nattermann, J., Feldmann, G., Ahlenstiel, G., Langhans, B., Sauerbruch, T., Spengler, U. Gut (2006) [Pubmed]
  5. Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. Boyington, J.C., Riaz, A.N., Patamawenu, A., Coligan, J.E., Brooks, A.G., Sun, P.D. Immunity (1999) [Pubmed]
  6. Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. Bennett, I.M., Zatsepina, O., Zamai, L., Azzoni, L., Mikheeva, T., Perussia, B. J. Exp. Med. (1996) [Pubmed]
  7. ITK and IL-15 support two distinct subsets of CD8+ T cells. Dubois, S., Waldmann, T.A., Müller, J.R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Khalturin, K., Becker, M., Rinkevich, B., Bosch, T.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  9. Direct binding of a soluble natural killer cell inhibitory receptor to a soluble human leukocyte antigen-Cw4 class I major histocompatibility complex molecule. Fan, Q.R., Garboczi, D.N., Winter, C.C., Wagtmann, N., Long, E.O., Wiley, D.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. Lanier, L.L., Chang, C., Phillips, J.H. J. Immunol. (1994) [Pubmed]
  11. CD161 (human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase. Pozo, D., Valés-Gómez, M., Mavaddat, N., Williamson, S.C., Chisholm, S.E., Reyburn, H. J. Immunol. (2006) [Pubmed]
  12. IL-12-induced up-regulation of NKRP1A expression in human NK cells and consequent NKRP1A-mediated down-regulation of NK cell activation. Poggi, A., Costa, P., Tomasello, E., Moretta, L. Eur. J. Immunol. (1998) [Pubmed]
  13. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. Aldemir, H., Prod'homme, V., Dumaurier, M.J., Retiere, C., Poupon, G., Cazareth, J., Bihl, F., Braud, V.M. J. Immunol. (2005) [Pubmed]
  14. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. Rosen, D.B., Bettadapura, J., Alsharifi, M., Mathew, P.A., Warren, H.S., Lanier, L.L. J. Immunol. (2005) [Pubmed]
  15. CD161+ T (NT) cells exist predominantly in human intestinal epithelium as well as in liver. Iiai, T., Watanabe, H., Suda, T., Okamoto, H., Abo, T., Hatakeyama, K. Clin. Exp. Immunol. (2002) [Pubmed]
  16. Phenotypic and functional analysis of CD4+ NKRP1A+ human T lymphocytes. Direct evidence that the NKRP1A molecule is involved in transendothelial migration. Poggi, A., Costa, P., Zocchi, M.R., Moretta, L. Eur. J. Immunol. (1997) [Pubmed]
  17. Association of human NK cell surface receptors NKR-P1 and CD94 with Src-family protein kinases. Cerný, J., Fiserová, A., Horváth, O., Bezouska, K., Pospísil, M., Horejsí, V. Immunogenetics (1997) [Pubmed]
  18. Differentially induced expression of C-type lectins in activated lymphocytes. Eichler, W., Ruschpler, P., Wobus, M., Drössler, K. J. Cell. Biochem. Suppl. (2001) [Pubmed]
  19. Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. Competition by HIV-1 Tat. Poggi, A., Rubartelli, A., Zocchi, M.R. J. Biol. Chem. (1998) [Pubmed]
  20. Modulation of K562 cells with sodium butyrate. Association of impaired NK susceptibility with sialic acid and analysis of other parameters. Werkmeister, J.A., Pross, H.F., Roder, J.C. Int. J. Cancer (1983) [Pubmed]
  21. NK cells differentiated from bone marrow, cord blood and peripheral blood stem cells exhibit similar phenotype and functions. Carayol, G., Robin, C., Bourhis, J.H., Bennaceur-Griscelli, A., Chouaib, S., Coulombel, L., Caignard, A. Eur. J. Immunol. (1998) [Pubmed]
  22. The immunosuppressive agent FK506 enhances the cytolytic activity of inhibitory natural killer cell receptor (CD94/NKG2A)-expressing CD8 T cells. Tanaka, J., Toubai, T., Iwao, N., Tsutsumi, Y., Kato, N., Miura, Y., Shigematsu, A., Hirate, D., Ota, S., Asaka, M., Imamura, M. Transplantation (2005) [Pubmed]
  23. Expression of human NKRP1A by CD34+ immature thymocytes: NKRP1A-mediated regulation of proliferation and cytolytic activity. Poggi, A., Costa, P., Morelli, L., Cantoni, C., Pella, N., Spada, F., Biassoni, R., Nanni, L., Revello, V., Tomasello, E., Mingari, M.C., Moretta, A., Moretta, L. Eur. J. Immunol. (1996) [Pubmed]
  24. Differential regulation of killer cell Ig-like receptors and CD94 lectin-like dimers on NK and T lymphocytes from HIV-1-infected individuals. André, P., Brunet, C., Guia, S., Gallais, H., Sampol, J., Vivier, E., Dignat-George, F. Eur. J. Immunol. (1999) [Pubmed]
  25. Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Zeddou, M., Greimers, R., de Valensart, N., Nayjib, B., Tasken, K., Boniver, J., Moutschen, M., Rahmouni, S. Biochem. Pharmacol. (2005) [Pubmed]
  26. Increased proportion of HLA-class-I-specific natural killer cell receptors (CD94) on peripheral blood mononuclear cells after allogeneic bone marrow transplantation. Tanaka, J., Tutumi, Y., Zhang, L., Mori, A., Kahata, K., Toyoshima, N., Ohta, S., Kobayashi, S., Hashino, S., Asaka, M., Imamura, M. Acta Haematol. (2001) [Pubmed]
 
WikiGenes - Universities