The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

MB  -  myoglobin

Sus scrofa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MB

 

High impact information on MB

  • In vitro studies demonstrated that NO was able to reduce the reactive oxygen species produced by myoglobin, especially oxoferrylmyoglobin, which either are present in heart or are formed in high concentrations during the reperfusion of ischemic myocardium [6].
  • Neither the carbon monoxide scavenger myoglobin (5-20 microm) nor the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one could reverse ASM proliferation induced by tin-protoporphyrin, making a role of the CO-cGMP pathway in HO-modulated proliferation unlikely [7].
  • All of these results suggest strongly that azide enters the distal pocket of native myoglobin through a polar channel that is regulated by a His64 "gate." In contrast to azide binding, the rate constant for cyanide association decreases 4-300-fold when the distal histidine is replaced with apolar residues [8].
  • When beta-lactoglobulin A, melittin, serum albumin, myoglobin, and a protein inhibiting lipase from soybean were preincubated with a dicaprin film at a surface pressure of 35 dynes/cm, no activity was detected with horse pancreatic or Rhizopus delemar lipases [9].
  • The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin [10].
 

Chemical compound and disease context of MB

 

Biological context of MB

 

Anatomical context of MB

  • The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion [5].
  • A simple spectroscopic method for determining the cytochrome c oxidase, cytochrome a, a3, content in tissue and mitochondria samples independent of myoglobin or blood contamination is described [14].
  • Flux-decline data were obtained for the filtration of bovine serum albumin, lysozyme, pepsin, immunoglobulin G, and myoglobin through polycarbonate track-etch membranes [15].
  • The left circumflex coronary artery was ligated for 60-min and then reperfused for 48-h. Plasma levels of myoglobin and troponin I were quantified during reperfusion [12].
  • Mb positive cells of various degrees were detected in all thymuses of both groups, and immunoelectron microscopical examination disclosed that Mb positive cells corresponded to interdigitating reticulum cells and myoid cells in non-neoplastic thymuses, and neoplastic epithelial reticular cells in thymomas [16].
 

Associations of MB with chemical compounds

  • In the mollusc myoglobin, arginine-E10 is believed to swing into the heme pocket and provide a hydrogen bond to the bound O2 [17].
  • The 2D 1H-NMR measurements of the CO complexes show that mutation of Ser92 to Ala changes the relative position of the His97 imidazole group to the heme plane, but the change is not so drastic as reported in the crystal data of Ser92 mutant of pig Mb [Smerdon et al. (1993) Biochemistry 32, 5132-5138] [18].
  • Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution [19].
  • Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack [3].
  • The effects of mutation of the conserved serine92 residue to alanine, valine, and leucine in pig myoglobin have been determined [20].
 

Other interactions of MB

 

Analytical, diagnostic and therapeutic context of MB

References

  1. Beneficial effects of the 21-aminosteroid U 74389G on the ischemia-reperfusion damage in pig hearts. Nediani, C., Perna, A.M., Liguori, P., Formigli, L., Ibba-Manneschi, L., Zecchi-Orlandini, S., Fiorillo, C., Rizzuti, G., Nassi, P. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  2. Comparison of cardiac troponin I, creatine kinase-MB, and myoglobin for detection of acute ischemic myocardial injury in a swine model. Feng, Y.J., Chen, C., Fallon, J.T., Lai, T., Chen, L., Knibbs, D.R., Waters, D.D., Wu, A.H. Am. J. Clin. Pathol. (1998) [Pubmed]
  3. Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Zager, R.A., Burkhart, K.M. Kidney Int. (1998) [Pubmed]
  4. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Schenkman, K.A., Yan, S. Crit. Care Med. (2000) [Pubmed]
  5. Comparison of buffer and red blood cell perfusion of guinea pig heart oxygenation. Schenkman, K.A., Beard, D.A., Ciesielski, W.A., Feigl, E.O. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  6. Nitric oxide/carbon monoxide. A molecular switch for myocardial preservation during ischemia. Maulik, N., Engelman, D.T., Watanabe, M., Engelman, R.M., Rousou, J.A., Flack, J.E., Deaton, D.W., Gorbunov, N.V., Elsayed, N.M., Kagan, V.E., Das, D.K. Circulation (1996) [Pubmed]
  7. Heme oxygenase inhibits human airway smooth muscle proliferation via a bilirubin-dependent modulation of ERK1/2 phosphorylation. Taillé, C., Almolki, A., Benhamed, M., Zedda, C., Mégret, J., Berger, P., Lesèche, G., Fadel, E., Yamaguchi, T., Marthan, R., Aubier, M., Boczkowski, J. J. Biol. Chem. (2003) [Pubmed]
  8. Structural factors governing azide and cyanide binding to mammalian metmyoglobins. Brancaccio, A., Cutruzzolá, F., Allocatelli, C.T., Brunori, M., Smerdon, S.J., Wilkinson, A.J., Dou, Y., Keenan, D., Ikeda-Saito, M., Brantley, R.E. J. Biol. Chem. (1994) [Pubmed]
  9. Inhibition of lipases by proteins. A kinetic study with dicaprin monolayers. Gargouri, Y., Pieroni, G., Rivière, C., Sugihara, A., Sarda, L., Verger, R. J. Biol. Chem. (1985) [Pubmed]
  10. Inversion of axial coordination in myoglobin to create a "proximal" ligand binding pocket. Uno, T., Sakamoto, R., Tomisugi, Y., Ishikawa, Y., Wilkinson, A.J. Biochemistry (2003) [Pubmed]
  11. Age-related differences in myocardial hydrogen ion buffering during ischemia. Wittnich, C., Su, J., Boscarino, C., Belanger, M. Mol. Cell. Biochem. (2006) [Pubmed]
  12. Cardioprotection of cariporide evaluated by plasma myoglobin and troponin I in myocardial infarction in pigs. Létienne, R., Bel, L., Bessac, A.M., Denais, D., Degryse, A.D., John, G.W., Le Grand, B. Fundamental & clinical pharmacology. (2006) [Pubmed]
  13. Cloning and sequence analysis of porcine myoglobin cDNA. Akaboshi, E. Gene (1985) [Pubmed]
  14. Spectroscopic determination of cytochrome c oxidase content in tissues containing myoglobin or hemoglobin. Balaban, R.S., Mootha, V.K., Arai, A. Anal. Biochem. (1996) [Pubmed]
  15. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration. Palacio, L., Ho, C.C., Zydney, A.L. Biotechnol. Bioeng. (2002) [Pubmed]
  16. Immunopathological study related to myoglobin in myasthenic and non-myasthenic thymuses. Koeda, T. Acta Pathol. Jpn. (1986) [Pubmed]
  17. Interactions among residues CD3, E7, E10, and E11 in myoglobins: attempts to simulate the ligand-binding properties of Aplysia myoglobin. Smerdon, S.J., Krzywda, S., Brzozowski, A.M., Davies, G.J., Wilkinson, A.J., Brancaccio, A., Cutruzzolá, F., Allocatelli, C.T., Brunori, M., Li, T. Biochemistry (1995) [Pubmed]
  18. Spectroscopic study of Ser92 mutants of human myoglobin: hydrogen bonding effect of Ser92 to proximal His93 on structure and property of myoglobin. Shiro, Y., Iizuka, T., Marubayashi, K., Ogura, T., Kitagawa, T., Balasubramanian, S., Boxer, S.G. Biochemistry (1994) [Pubmed]
  19. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution. Krzywda, S., Murshudov, G.N., Brzozowski, A.M., Jaskolski, M., Scott, E.E., Klizas, S.A., Gibson, Q.H., Olson, J.S., Wilkinson, A.J. Biochemistry (1998) [Pubmed]
  20. Serine92 (F7) contributes to the control of heme reactivity and stability in myoglobin. Smerdon, S.J., Krzywda, S., Wilkinson, A.J., Brantley, R.E., Carver, T.E., Hargrove, M.S., Olson, J.S. Biochemistry (1993) [Pubmed]
  21. Characterization of proteins from boar prostate. Manásková, P., Rylava, H., Tichá, M., Jonáková, V. Am. J. Reprod. Immunol. (2002) [Pubmed]
  22. Electron transfer between heme proteins and ceruloplasmin. Caffrey, J.M., Shinn, R.E., Frieden, E. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  23. Glomerular basement membrane as a compressible ultrafilter. Robinson, G.B., Walton, H.A. Microvasc. Res. (1989) [Pubmed]
  24. Microdialysis of blood from the cardiac venous outflow: a technique for monitoring myocardial ischemia. Lockowandt, U., Liska, J., Bäckström, T., Franco-Cereceda, A. Scand. Cardiovasc. J. (2000) [Pubmed]
  25. Alteration of axial coordination by protein engineering in myoglobin. Bisimidazole ligation in the His64-->Val/Val68-->His double mutant. Dou, Y., Admiraal, S.J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A.J., Li, T., Olson, J.S., Prince, R.C., Pickering, I.J., George, G.N. J. Biol. Chem. (1995) [Pubmed]
  26. The contribution of endothelial cells to hyperacute rejection in xenogeneic perfused working hearts. Suckfüll, M.M., Pieske, O., Müdsam, M., Babic, R., Hammer, C. Transplantation (1994) [Pubmed]
 
WikiGenes - Universities