The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

SNORD87  -  small nucleolar RNA, C/D box 87

Homo sapiens

Synonyms: HBII-276, U87
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SNORD87

  • It caused a dramatic and often complete tumor regression in vivo in two subcutaneous (P =.0002 for both U251N and U87) and in two intracerebral (P =.0004 for U251N and P =.0009 for U87) human malignant glioma mouse models [1].
  • To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber [2].
  • We investigated the effects of SJ749 in two human astrocytoma cell lines, A172 and U87, which express different levels of alpha5beta1 [3].
  • Successful imaging of experimental brain tumors with this system is demonstrated in nude rats bearing cerebral implants of human U87 glioma [4].
  • Athymic NCr/Sed nu/nu mice bearing 6-mm xenograft of the human glioblastoma multiforme (U87), or colon adenocarcinoma (LS174T) were treated with anti-VEGF mAb injected i.p. on alternate days for a total of six injections at a dosage of 100 microg/injection/mouse [5].

High impact information on SNORD87


Chemical compound and disease context of SNORD87


Biological context of SNORD87


Anatomical context of SNORD87

  • Liposomal monensin produced similar effects when it was combined with different specific immunotoxins and other target cell lines (i.e., LS174T, U87, and CEM) [20].
  • Confocal imaging showed EphB2 localized in lamellipodia of motile U87 cells [16].
  • Our studies show markedly elevated miR-21 levels in human glioblastoma tumor tissues, early-passage glioblastoma cultures, and in six established glioblastoma cell lines (A172, U87, U373, LN229, LN428, and LN308) compared with nonneoplastic fetal and adult brain tissues and compared with cultured nonneoplastic glial cells [21].
  • Herein we describe the effects of morphine on gene expression of the alpha- and beta-chemokines and their receptors by the astrocytoma cell line U87 and by primary normal human astrocyte (NHA) cultures [22].
  • In cell surface binding assays, G3 products expressed in COS-7 cells and bacteria bound to U87 cell surface [23].

Associations of SNORD87 with chemical compounds

  • L-365,260, a CCK receptor B antagonist used at 0.01 microM, increased cellular proliferation in seven cell lines (A172, H4, Hs683, SW1783, T98G, U118, and U138), decreased it in one (U87), and had no effect in the remaining two [6].
  • In vitro, GCV sensitivity (10 microg/ml) was studied in U87 MG cells after infection at a multiplicity of infection of 1 and 10 [11].
  • Consistent with this idea, roscovitine, a specific cyclin-dependent kinase inhibitor, also enhanced the efficacy of fractionated radiation in U87 spheroids [24].
  • RESULTS: We demonstrated here that R115777 treatment induced a significant oxygenation of U87 xenografts (P<0.001) associated with a decrease of hypoxia-inducible factor 1alpha expression [25].
  • Farnesyl thiosalicylic acid also inhibited the growth of U87 cells [26].

Other interactions of SNORD87

  • Unlike transcripts of four other known non-protein-coding host genes, U87HG RNA shows a relatively high degree of conservation suggesting a selective pressure and a possible functional activity of U87HG apart from producing U87 snoRNA [27].

Analytical, diagnostic and therapeutic context of SNORD87

  • A single local injection of encapsulated endostatin-secreting cells in a nude mouse model resulted in a 72.3% reduction in subcutaneous U87 xenografts' weight 21 days post treatment [28].
  • In summary, MV-CEA has potent antitumor activity against gliomas in vitro, as well as in both s.c. and orthotopic U87 animal models [29].
  • Intratumoral administration of the anti-AM antibody resulted in a 70% (P < 0.001) reduction in subcutaneous U87 xenograft weight 21 days after treatment [30].
  • We examined the effect on tumor growth, vessel morphology, and expression of angiogenic factors of combining radiotherapy and antiangiogenesis in the human glioblastoma line U87 grown in the flank or intracranially in the nude mouse [31].
  • METHODS: We cultured cell lines U87, U118, U251, and A172 and used tissue-selective microdissection of eight primary GBMs to obtain pure populations of tumor cells, which we studied using two-dimensional gel electrophoresis (2DGE) and examined using differential expression software [32].


  1. Reovirus as an oncolytic agent against experimental human malignant gliomas. Wilcox, M.E., Yang, W., Senger, D., Rewcastle, N.B., Morris, D.G., Brasher, P.M., Shi, Z.Q., Johnston, R.N., Nishikawa, S., Lee, P.W., Forsyth, P.A. J. Natl. Cancer Inst. (2001) [Pubmed]
  2. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., Jain, R.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. The small alpha5beta1 integrin antagonist, SJ749, reduces proliferation and clonogenicity of human astrocytoma cells. Maglott, A., Bartik, P., Cosgun, S., Klotz, P., Rondé, P., Fuhrmann, G., Takeda, K., Martin, S., Dontenwill, M. Cancer Res. (2006) [Pubmed]
  4. Imaging brain tumors by targeting peptide radiopharmaceuticals through the blood-brain barrier. Kurihara, A., Pardridge, W.M. Cancer Res. (1999) [Pubmed]
  5. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Lee, C.G., Heijn, M., di Tomaso, E., Griffon-Etienne, G., Ancukiewicz, M., Koike, C., Park, K.R., Ferrara, N., Jain, R.K., Suit, H.D., Boucher, Y. Cancer Res. (2000) [Pubmed]
  6. Influence of gastrin on human astrocytic tumor cell proliferation. Camby, I., Salmon, I., Danguy, A., Pasteels, J.L., Brotchi, J., Martinez, J., Kiss, R. J. Natl. Cancer Inst. (1996) [Pubmed]
  7. Ephrin-B3 Ligand Promotes Glioma Invasion through Activation of Rac1. Nakada, M., Drake, K.L., Nakada, S., Niska, J.A., Berens, M.E. Cancer Res. (2006) [Pubmed]
  8. Ectopic doublecortin gene expression suppresses the malignant phenotype in glioblastoma cells. Santra, M., Zhang, X., Santra, S., Jiang, F., Chopp, M. Cancer Res. (2006) [Pubmed]
  9. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., Kloog, Y. Cancer Res. (2005) [Pubmed]
  10. Preferential binding of radiolabeled poly-L-lysines to C6 and U87 MG glioblastomas compared with endothelial cells in vitro. Kornguth, S.E., Kalinke, T., Robins, H.I., Cohen, J.D., Turski, P. Cancer Res. (1989) [Pubmed]
  11. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Nanda, D., Vogels, R., Havenga, M., Avezaat, C.J., Bout, A., Smitt, P.S. Cancer Res. (2001) [Pubmed]
  12. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Abdollahi, A., Lipson, K.E., Sckell, A., Zieher, H., Klenke, F., Poerschke, D., Roth, A., Han, X., Krix, M., Bischof, M., Hahnfeldt, P., Grone, H.J., Debus, J., Hlatky, L., Huber, P.E. Cancer Res. (2003) [Pubmed]
  13. Effect of 1,19-bis(ethylamino)-5,10,15-triazanonadecane on human tumor xenografts. Dolan, M.E., Fleig, M.J., Feuerstein, B.G., Basu, H.S., Luk, G.D., Casero, R.A., Marton, L.J. Cancer Res. (1994) [Pubmed]
  14. Expression of p57(KIP2) potently blocks the growth of human astrocytomas and induces cell senescence. Tsugu, A., Sakai, K., Dirks, P.B., Jung, S., Weksberg, R., Fei, Y.L., Mondal, S., Ivanchuk, S., Ackerley, C., Hamel, P.A., Rutka, J.T. Am. J. Pathol. (2000) [Pubmed]
  15. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Senger, D.L., Tudan, C., Guiot, M.C., Mazzoni, I.E., Molenkamp, G., LeBlanc, R., Antel, J., Olivier, A., Snipes, G.J., Kaplan, D.R. Cancer Res. (2002) [Pubmed]
  16. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Nakada, M., Niska, J.A., Miyamori, H., McDonough, W.S., Wu, J., Sato, H., Berens, M.E. Cancer Res. (2004) [Pubmed]
  17. Orthotopic growth of human glioma cells quantitatively and qualitatively influences radiation-induced changes in gene expression. Camphausen, K., Purow, B., Sproull, M., Scott, T., Ozawa, T., Deen, D.F., Tofilon, P.J. Cancer Res. (2005) [Pubmed]
  18. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Luwor, R.B., Johns, T.G., Murone, C., Huang, H.J., Cavenee, W.K., Ritter, G., Old, L.J., Burgess, A.W., Scott, A.M. Cancer Res. (2001) [Pubmed]
  19. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Yuan, F., Salehi, H.A., Boucher, Y., Vasthare, U.S., Tuma, R.F., Jain, R.K. Cancer Res. (1994) [Pubmed]
  20. Potentiation of antitumor immunotoxins by liposomal monensin. Griffin, T., Rybak, M.E., Recht, L., Singh, M., Salimi, A., Raso, V. J. Natl. Cancer Inst. (1993) [Pubmed]
  21. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Chan, J.A., Krichevsky, A.M., Kosik, K.S. Cancer Res. (2005) [Pubmed]
  22. Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroglial cells via the opioid mu receptor. Mahajan, S.D., Schwartz, S.A., Shanahan, T.C., Chawda, R.P., Nair, M.P. J. Immunol. (2002) [Pubmed]
  23. Identification of the motif in versican G3 domain that plays a dominant-negative effect on astrocytoma cell proliferation through inhibiting versican secretion and binding. Wu, Y., Zhang, Y., Cao, L., Chen, L., Lee, V., Zheng, P.S., Kiani, C., Adams, M.E., Ang, L.C., Paiwand, F., Yang, B.B. J. Biol. Chem. (2001) [Pubmed]
  24. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Eshleman, J.S., Carlson, B.L., Mladek, A.C., Kastner, B.D., Shide, K.L., Sarkaria, J.N. Cancer Res. (2002) [Pubmed]
  25. The farnesyltransferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft. Delmas, C., End, D., Rochaix, P., Favre, G., Toulas, C., Cohen-Jonathan, E. Clin. Cancer Res. (2003) [Pubmed]
  26. E2F1 identified by promoter and biochemical analysis as a central target of glioblastoma cell-cycle arrest in response to Ras inhibition. Blum, R., Nakdimon, I., Goldberg, L., Elkon, R., Shamir, R., Rechavi, G., Kloog, Y. Int. J. Cancer (2006) [Pubmed]
  27. Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay. Makarova, J.A., Kramerov, D.A. Gene (2005) [Pubmed]
  28. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Joki, T., Machluf, M., Atala, A., Zhu, J., Seyfried, N.T., Dunn, I.F., Abe, T., Carroll, R.S., Black, P.M. Nat. Biotechnol. (2001) [Pubmed]
  29. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Phuong, L.K., Allen, C., Peng, K.W., Giannini, C., Greiner, S., TenEyck, C.J., Mishra, P.K., Macura, S.I., Russell, S.J., Galanis, E.C. Cancer Res. (2003) [Pubmed]
  30. Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Ouafik, L., Sauze, S., Boudouresque, F., Chinot, O., Delfino, C., Fina, F., Vuaroqueaux, V., Dussert, C., Palmari, J., Dufour, H., Grisoli, F., Casellas, P., Brünner, N., Martin, P.M. Am. J. Pathol. (2002) [Pubmed]
  31. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Lund, E.L., Bastholm, L., Kristjansen, P.E. Clin. Cancer Res. (2000) [Pubmed]
  32. Proteins and protein pattern differences between glioma cell lines and glioblastoma multiforme. Vogel, T.W., Zhuang, Z., Li, J., Okamoto, H., Furuta, M., Lee, Y.S., Zeng, W., Oldfield, E.H., Vortmeyer, A.O., Weil, R.J. Clin. Cancer Res. (2005) [Pubmed]
WikiGenes - Universities