The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ARHGAP24  -  Rho GTPase activating protein 24

Homo sapiens

Synonyms: DKFZP564B1162, FILGAP, FLJ33877, FilGAP, Filamin-A-associated RhoGAP, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ARHGAP24


High impact information on ARHGAP24


Chemical compound and disease context of ARHGAP24


Biological context of ARHGAP24

  • A mutant R82A alteration achieved a similar phenotype in vitro to the antisense, demonstrating the importance of the GTPase-activating protein activity to p73 function [1].
  • Recent evidence indicates that the p53 tumor suppressor protein, and its related family member, p73, play an essential role in regulating neuronal apoptosis in both the developing and injured, mature nervous system [12].
  • Inactivation of the GAP domain by a point mutation does not abolish the effect of RC-GAP72 on actin stress fibers but moderates its capability to induce membrane protrusions [13].
  • Transient transfection experiments indicated that overexpression of Bcr/Abl in 293T cells is able to activate p38 MAPK or induce p73 stabilization, suggesting that c-Abl and Bcr/Abl share some biological substrates [14].
  • DNA damage-triggered signaling and execution of apoptosis is cell-type- and genotoxin-specific depending on the p53 (p63 and p73) status, death-receptor responsiveness, MAP-kinase activation and, most importantly, DNA repair capacity [15].

Anatomical context of ARHGAP24


Associations of ARHGAP24 with chemical compounds

  • Moreover, stimulation of the p73 proapoptotic function by cisplatin requires PMS2 [18].
  • The tyrosine kinase, Src, phosphorylates Wwox at tyrosine 33 in the first WW domain and enhances its binding to p73 [19].
  • This E2F1-mediated apoptosis is neither p53- nor p73-dependent but proceeds through selective induction of proapoptotic BH3-only protein Bim [20].
  • Conversely, CLL cells transduced with an imatinib-resistant c-Abl mutant could be induced by CD154 to express p73 and Bid even when treated with imatinib [21].
  • Tat bound to the N-terminal region of p73 spanning amino acids 1 to 120, and this interaction required the cysteine-rich domain (amino acids 30 to 40) of Tat [22].

Regulatory relationships of ARHGAP24

  • We propose that RC-GAP72 affects cellular morphology by targeting activated Cdc42 and Rac1 GTPases to specific subcellular sites, triggering local morphological changes [13].

Other interactions of ARHGAP24


Analytical, diagnostic and therapeutic context of ARHGAP24

  • Altogether, our findings identify YAP as a key determinant of p73 gene targeting in response to DNA damage [24].
  • A two-hybrid assay was used to characterize the homodimeric and heterodimeric interactions between the p73 variants, and showed that neither p73gamma nor p73delta interact with p53, whereas p73gamma showed strong interactions with all p73 isoforms, and p73delta binds efficiently p73alpha and p73gamma but only weakly p73beta [17].
  • RESULTS: RNA transcripts encoding p73 were detected by in situ hybridization in tumor cells but not in stromal, endothelial, or inflammatory cells or in cholangiocytes [3].
  • These results indicate that CD154 can sensitize leukemia cells to apoptosis via the c-Abl-dependent activation of p73 and mitigate the resistance of p53-deficient CLL cells to anticancer drug therapy [21].
  • Neither homologous deletion nor rearrangement of the p73 gene were found by Southern blot analysis in any of the cell lines that lack expression of p73 [4].


  1. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Su, Z.J., Hahn, C.N., Goodall, G.J., Reck, N.M., Leske, A.F., Davy, A., Kremmidiotis, G., Vadas, M.A., Gamble, J.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.C., Valent, A., Minty, A., Chalon, P., Lelias, J.M., Dumont, X., Ferrara, P., McKeon, F., Caput, D. Cell (1997) [Pubmed]
  3. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. Tannapfel, A., Wasner, M., Krause, K., Geissler, F., Katalinic, A., Hauss, J., Mössner, J., Engeland, K., Wittekind, C. J. Natl. Cancer Inst. (1999) [Pubmed]
  4. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Kawano, S., Miller, C.W., Gombart, A.F., Bartram, C.R., Matsuo, Y., Asou, H., Sakashita, A., Said, J., Tatsumi, E., Koeffler, H.P. Blood (1999) [Pubmed]
  5. Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation. Deng, X., Hofmann, E.R., Villanueva, A., Hobert, O., Capodieci, P., Veach, D.R., Yin, X., Campodonico, L., Glekas, A., Cordon-Cardo, C., Clarkson, B., Bornmann, W.G., Fuks, Z., Hengartner, M.O., Kolesnick, R. Nat. Genet. (2004) [Pubmed]
  6. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Jost, C.A., Marin, M.C., Kaelin, W.G. Nature (1997) [Pubmed]
  7. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Zeng, X., Li, X., Miller, A., Yuan, Z., Yuan, W., Kwok, R.P., Goodman, R., Lu, H. Mol. Cell. Biol. (2000) [Pubmed]
  8. p73 cooperates with DNA damage agents to induce apoptosis in MCF7 cells in a p53-dependent manner. Zhu, J., Nozell, S., Wang, J., Jiang, J., Zhou, W., Chen, X. Oncogene (2001) [Pubmed]
  9. Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo. Concin, N., Hofstetter, G., Berger, A., Gehmacher, A., Reimer, D., Watrowski, R., Tong, D., Schuster, E., Hefler, L., Heim, K., Mueller-Holzner, E., Marth, C., Moll, U.M., Zeimet, A.G., Zeillinger, R. Clin. Cancer Res. (2005) [Pubmed]
  10. P73 functionally replaces p53 in Adriamycin-treated, p53-deficient breast cancer cells. Vayssade, M., Haddada, H., Faridoni-Laurens, L., Tourpin, S., Valent, A., Bénard, J., Ahomadegbe, J.C. Int. J. Cancer (2005) [Pubmed]
  11. 5-Aza-2'-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Schmelz, K., Wagner, M., Dörken, B., Tamm, I. Int. J. Cancer (2005) [Pubmed]
  12. Neuronal life and death: an essential role for the p53 family. Miller, F.D., Pozniak, C.D., Walsh, G.S. Cell Death Differ. (2000) [Pubmed]
  13. Characterization of a novel GTPase-activating protein associated with focal adhesions and the actin cytoskeleton. Lavelin, I., Geiger, B. J. Biol. Chem. (2005) [Pubmed]
  14. Modulation of the p38 MAPK (mitogen-activated protein kinase) pathway through Bcr/Abl: implications in the cellular response to Ara-C. Sánchez-Arévalo Lobo, V.J., Aceves Luquero, C.I., Alvarez-Vallina, L., Tipping, A.J., Viniegra, J.G., Hernández Losa, J., Parada Cobo, C., Galán Moya, E.M., Gayoso Cruz, J., Melo, J.V., Ramón y Cajal, S., Sánchez-Prieto, R. Biochem. J. (2005) [Pubmed]
  15. DNA damage-induced cell death by apoptosis. Roos, W.P., Kaina, B. Trends in molecular medicine. (2006) [Pubmed]
  16. Death and NF-kappaB in T cell activation: life at the edge. Green, D.R. Mol. Cell (2003) [Pubmed]
  17. Two new p73 splice variants, gamma and delta, with different transcriptional activity. De Laurenzi, V., Costanzo, A., Barcaroli, D., Terrinoni, A., Falco, M., Annicchiarico-Petruzzelli, M., Levrero, M., Melino, G. J. Exp. Med. (1998) [Pubmed]
  18. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Shimodaira, H., Yoshioka-Yamashita, A., Kolodner, R.D., Wang, J.Y. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  19. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Aqeilan, R.I., Pekarsky, Y., Herrero, J.J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S.Y., Melino, G., Huebner, K., Croce, C.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Zhao, Y., Tan, J., Zhuang, L., Jiang, X., Liu, E.T., Yu, Q. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  21. CD154 induces p73 to overcome the resistance to apoptosis of chronic lymphocytic leukemia cells lacking functional p53. Dicker, F., Kater, A.P., Prada, C.E., Fukuda, T., Castro, J.E., Sun, G., Wang, J.Y., Kipps, T.J. Blood (2006) [Pubmed]
  22. p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Amini, S., Mameli, G., Del Valle, L., Skowronska, A., Reiss, K., Gelman, B.B., White, M.K., Khalili, K., Sawaya, B.E. Mol. Cell. Biol. (2005) [Pubmed]
  23. Identification and characterization of ARHGAP24 and ARHGAP25 genes in silico. Katoh, M., Katoh, M. Int. J. Mol. Med. (2004) [Pubmed]
  24. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Strano, S., Monti, O., Pediconi, N., Baccarini, A., Fontemaggi, G., Lapi, E., Mantovani, F., Damalas, A., Citro, G., Sacchi, A., Del Sal, G., Levrero, M., Blandino, G. Mol. Cell (2005) [Pubmed]
WikiGenes - Universities