The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

MK-955     [(3S)-3-methyloxiran-2- yl]phosphonic acid

Synonyms: LS-106591, BRN 1680831, AC1L1M35, C3H7O4P, 883A, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of FOSFOMYCIN

  • We now show that cells with inactivated murMN also have a third phenotype: an increased susceptibility to lysis when exposed to low concentrations of fosfomycin, d-cycloserine, vancomycin, and nisin, indicating a wide-spectrum hypersensitivity to inhibitors of both early and late stages of cell wall biosynthesis [1].
  • Codon randomization and selection for the ability of resulting clones to confer fosfomycin resistance to Escherichia coli were used to identify residues critical for FosA function [2].
  • Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa [2].
  • Mutations of Cys115 to Asp exist in pathogens such as Mycobacteria or Chlamydia rendering these organisms resistant to fosfomycin [3].
  • Here we report the cloning and characterization of a complete fosfomycin biosynthetic cluster from Streptomyces fradiae and heterologous production of fosfomycin in S. lividans [4].
 

Psychiatry related information on FOSFOMYCIN

  • Increasing the dose infused (10 g) markedly shortened the latency period between reaching a sufficient concentration of fosfomycin in the CSF [5].
 

High impact information on FOSFOMYCIN

 

Chemical compound and disease context of FOSFOMYCIN

 

Biological context of FOSFOMYCIN

  • It provides an attractive template for the design of novel antibiotic drugs and is the target of the naturally occurring antibiotic fosfomycin, which covalently attaches to Cys115 in the active site of the enzyme [3].
  • Both of these plasmids are present in parental S. marcescens strains resistant to fosfomycin [14].
  • The pharmacokinetics of phosphomycin were studied in seven patients with pleural effusion of varied etiologies [15].
  • Although the addition of the substrate, fosfomycin, has no appreciable effect on the association kinetics of enzyme and metal, it significantly decreases the dissociation rate, suggesting that the substrate interacts directly with the metal center [16].
  • Nucleotide sequence and intracellular location of the product of the fosfomycin resistance gene from transposon Tn2921 [17].
 

Anatomical context of FOSFOMYCIN

 

Associations of FOSFOMYCIN with other chemical compounds

 

Gene context of FOSFOMYCIN

 

Analytical, diagnostic and therapeutic context of FOSFOMYCIN

References

  1. The murMN operon: a functional link between antibiotic resistance and antibiotic tolerance in Streptococcuspneumoniae. Filipe, S.R., Severina, E., Tomasz, A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. Beharry, Z., Palzkill, T. J. Biol. Chem. (2005) [Pubmed]
  3. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. Eschenburg, S., Priestman, M., Schönbrunn, E. J. Biol. Chem. (2005) [Pubmed]
  4. Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Woodyer, R.D., Shao, Z., Thomas, P.M., Kelleher, N.L., Blodgett, J.A., Metcalf, W.W., van der Donk, W.A., Zhao, H. Chem. Biol. (2006) [Pubmed]
  5. Pharmacokinetic aspects of cerebrospinal fluid penetration of fosfomycin. Pfeifer, G., Frenkel, C., Entzian, W. International journal of clinical pharmacology research. (1985) [Pubmed]
  6. Control of bacteria adhesion by cell-wall engineering. Sadamoto, R., Niikura, K., Ueda, T., Monde, K., Fukuhara, N., Nishimura, S. J. Am. Chem. Soc. (2004) [Pubmed]
  7. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Legat, F.J., Maier, A., Dittrich, P., Zenahlik, P., Kern, T., Nuhsbaumer, S., Frossard, M., Salmhofer, W., Kerl, H., Müller, M. Antimicrob. Agents Chemother. (2003) [Pubmed]
  8. Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme. Liu, P., Liu, A., Yan, F., Wolfe, M.D., Lipscomb, J.D., Liu, H.W. Biochemistry (2003) [Pubmed]
  9. In vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. Rice, L.B., Eliopoulos, G.M., Moellering, R.C. Antimicrob. Agents Chemother. (1989) [Pubmed]
  10. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. Zhang, X., McDaniel, A.D., Wolf, L.E., Keusch, G.T., Waldor, M.K., Acheson, D.W. J. Infect. Dis. (2000) [Pubmed]
  11. In vitro activity of fosfomycin, alone and in combination, against methicillin-resistant Staphylococcus aureus. Alvarez, S., Jones, M., Berk, S.L. Antimicrob. Agents Chemother. (1985) [Pubmed]
  12. In vitro and in vivo antibacterial activity of FR-31564, a phosphonic acid antimicrobial agent. Neu, H.C., Kamimura, T. Antimicrob. Agents Chemother. (1981) [Pubmed]
  13. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Horii, T., Kimura, T., Sato, K., Shibayama, K., Ohta, M. Antimicrob. Agents Chemother. (1999) [Pubmed]
  14. Plasmid-determined resistance to fosfomycin in Serratia marcescens. Mendoza, C., Garcia, J.M., Llaneza, J., Mendez, F.J., Hardisson, C., Ortiz, J.M. Antimicrob. Agents Chemother. (1980) [Pubmed]
  15. Disposition of phosphomycin in patients with pleural effusion. Lastra, C.F., Mariño, E.L., Barrueco, M., Gervós, M.S., Gil, A.D. Antimicrob. Agents Chemother. (1984) [Pubmed]
  16. Elementary steps in the acquisition of Mn2+ by the fosfomycin resistance protein (FosA). Bernat, B.A., Armstrong, R.N. Biochemistry (2001) [Pubmed]
  17. Nucleotide sequence and intracellular location of the product of the fosfomycin resistance gene from transposon Tn2921. Navas, J., León, J., Arroyo, M., García Lobo, J.M. Antimicrob. Agents Chemother. (1990) [Pubmed]
  18. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Frossard, M., Joukhadar, C., Erovic, B.M., Dittrich, P., Mrass, P.E., Van Houte, M., Burgmann, H., Georgopoulos, A., Müller, M. Antimicrob. Agents Chemother. (2000) [Pubmed]
  19. Immunosuppressive activity of fosfomycin on human T-lymphocyte function in vitro. Morikawa, K., Oseko, F., Morikawa, S., Sawada, M. Antimicrob. Agents Chemother. (1993) [Pubmed]
  20. Immunomodulatory effect of fosfomycin on human B-lymphocyte function. Morikawa, K., Oseko, F., Morikawa, S. Antimicrob. Agents Chemother. (1993) [Pubmed]
  21. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. Pfausler, B., Spiss, H., Dittrich, P., Zeitlinger, M., Schmutzhard, E., Joukhadar, C. J. Antimicrob. Chemother. (2004) [Pubmed]
  22. In vitro susceptibility testing procedures for fosfomycin tromethamine. Barry, A.L., Fuchs, P.C. Antimicrob. Agents Chemother. (1991) [Pubmed]
  23. In vitro activity of imipenem against enterococci and staphylococci and evidence for high rates of synergism with teicoplanin, fosfomycin, and rifampin. Debbia, E., Varaldo, P.E., Schito, G.C. Antimicrob. Agents Chemother. (1986) [Pubmed]
  24. Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Marquardt, J.L., Brown, E.D., Lane, W.S., Haley, T.M., Ichikawa, Y., Wong, C.H., Walsh, C.T. Biochemistry (1994) [Pubmed]
  25. Susceptibilities of fluoroquinolone-resistant strains of Campylobacter jejuni to 11 oral antimicrobial agents. Gomez-Garces, J.L., Cogollos, R., Alos, J.L. Antimicrob. Agents Chemother. (1995) [Pubmed]
  26. Single-dose fosfomycin trometamol versus 5-day cephalexin regimen for treatment of uncomplicated lower urinary tract infections in women. Elhanan, G., Tabenkin, H., Yahalom, R., Raz, R. Antimicrob. Agents Chemother. (1994) [Pubmed]
  27. Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Morikawa, K., Watabe, H., Araake, M., Morikawa, S. Antimicrob. Agents Chemother. (1996) [Pubmed]
  28. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. McCoy, A.J., Sandlin, R.C., Maurelli, A.T. J. Bacteriol. (2003) [Pubmed]
  29. Alteration of cytokine levels by fosfomycin and prednisolone in spontaneous proliferation of cultured lymphocytes from patients with HTLV-I-associated myelopathy (HAM/TSP). Yamano, Y., Machigashira, K., Ijichi, S., Usuku, K., Kawabata, M., Arimura, K., Osame, M. J. Neurol. Sci. (1997) [Pubmed]
  30. Fosfomycin alters lipopolysaccharide-induced inflammatory cytokine production in mice. Matsumoto, T., Tateda, K., Miyazaki, S., Furuya, N., Ohno, A., Ishii, Y., Hirakata, Y., Yamaguchi, K. Antimicrob. Agents Chemother. (1999) [Pubmed]
  31. Fosfomycin kinetics after intravenous and oral administration to human volunteers. Goto, M., Sugiyama, M., Nakajima, S., Yamashina, H. Antimicrob. Agents Chemother. (1981) [Pubmed]
  32. Capillary electrophoresis analysis of fosfomycin in biological fluids for clinical pharmacokinetic studies. Petsch, M., Mayer-Helm, B.X., Sauermann, R., Joukhadar, C., Kenndler, E. Electrophoresis (2004) [Pubmed]
  33. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Kumon, H., Ono, N., Iida, M., Nickel, J.C. Antimicrob. Agents Chemother. (1995) [Pubmed]
 
WikiGenes - Universities