The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

DUSP1  -  dual specificity phosphatase 1

Homo sapiens

Synonyms: CL100, Dual specificity protein phosphatase 1, Dual specificity protein phosphatase hVH1, HVH1, MAP kinase phosphatase 1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of DUSP1


Psychiatry related information on DUSP1


High impact information on DUSP1


Chemical compound and disease context of DUSP1


Biological context of DUSP1


Anatomical context of DUSP1


Associations of DUSP1 with chemical compounds


Physical interactions of DUSP1


Enzymatic interactions of DUSP1


Regulatory relationships of DUSP1


Other interactions of DUSP1

  • Similar heat-induced aggregation, followed by partial resolubilization, was found with a distinct dual-specificity phosphatase MKP-1 but not with MKP-2 [35].
  • Therefore, MKP-3 and MKP-1 appeared to be critical heat-labile phosphatases involved in the activation of ERKs by heat shock [35].
  • MKP-1 antagonizes SAPK/JNK activation in response to diverse environmental stresses [2].
  • The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation [36].
  • In contrast, MKP-1 does not interact with STAT1 [37].
  • Our findings show that E2F-1 is a transcriptional activator of DUSP1 and that DUSP1 is a link between E2F-1 and MAP kinases [38].

Analytical, diagnostic and therapeutic context of DUSP1


  1. Identification and allelic frequencies of novel single-nucleotide polymorphisms in the DUSP1 and BTG1 genes. Suzuki, C., Unoki, M., Nakamura, Y. J. Hum. Genet. (2001) [Pubmed]
  2. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. Laderoute, K.R., Mendonca, H.L., Calaoagan, J.M., Knapp, A.M., Giaccia, A.J., Stork, P.J. J. Biol. Chem. (1999) [Pubmed]
  3. CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Sánchez-Pérez, I., Martínez-Gomariz, M., Williams, D., Keyse, S.M., Perona, R. Oncogene (2000) [Pubmed]
  4. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Vicent, S., Garayoa, M., López-Picazo, J.M., Lozano, M.D., Toledo, G., Thunnissen, F.B., Manzano, R.G., Montuenga, L.M. Clin. Cancer Res. (2004) [Pubmed]
  5. Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Rojo, F., González-Navarrete, I., Bragado, R., Dalmases, A., Menéndez, S., Cortes-Sempere, M., Suárez, C., Oliva, C., Servitja, S., Rodriguez-Fanjul, V., Sánchez-Pérez, I., Campas, C., Corominas, J.M., Tusquets, I., Bellosillo, B., Serrano, S., Perona, R., Rovira, A., Albanell, J. Clin. Cancer Res. (2009) [Pubmed]
  6. Latent herpesvirus hominis 1 in the central nervous system of psychotic patients. Libíková, H., Pogády, J., Rajcáni, J., Skodácek, I., Ciampor, F., Kocisová, M. Acta Virol. (1979) [Pubmed]
  7. Pten is essential for embryonic development and tumour suppression. Di Cristofano, A., Pesce, B., Cordon-Cardo, C., Pandolfi, P.P. Nat. Genet. (1998) [Pubmed]
  8. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Ward, Y., Gupta, S., Jensen, P., Wartmann, M., Davis, R.J., Kelly, K. Nature (1994) [Pubmed]
  9. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Brondello, J.M., Pouysségur, J., McKenzie, F.R. Science (1999) [Pubmed]
  10. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., Wishnow, K., Kaplan, I., Stork, P.J., Loda, M. Lab. Invest. (1997) [Pubmed]
  11. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Nelen, M.R., van Staveren, W.C., Peeters, E.A., Hassel, M.B., Gorlin, R.J., Hamm, H., Lindboe, C.F., Fryns, J.P., Sijmons, R.H., Woods, D.G., Mariman, E.C., Padberg, G.W., Kremer, H. Hum. Mol. Genet. (1997) [Pubmed]
  12. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Alessi, D.R., Smythe, C., Keyse, S.M. Oncogene (1993) [Pubmed]
  13. Human antibody responses to bacterial antigens: studies of a model conventional antigen and a proposed model B cell superantigen. Silverman, G.J. Int. Rev. Immunol. (1992) [Pubmed]
  14. Osmotic regulation of MG-132-induced MAP-kinase phosphatase MKP-1 expression in H4IIE rat hepatoma cells. Lornejad-Schafer, M., Schafer, C., Richter, L., Grune, T., Haussinger, D., Schliess, F. Cell. Physiol. Biochem. (2005) [Pubmed]
  15. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Abraham, S.M., Clark, A.R. Biochem. Soc. Trans. (2006) [Pubmed]
  16. Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Franklin, C.C., Srikanth, S., Kraft, A.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. Groom, L.A., Sneddon, A.A., Alessi, D.R., Dowd, S., Keyse, S.M. EMBO J. (1996) [Pubmed]
  18. Nerve growth factor-dependent survival of CESS B cell line is mediated by increased expression and decreased degradation of MAPK phosphatase 1. Rosini, P., De Chiara, G., Bonini, P., Lucibello, M., Marcocci, M.E., Garaci, E., Cozzolino, F., Torcia, M. J. Biol. Chem. (2004) [Pubmed]
  19. Role of CL-100, a dual specificity phosphatase, in thrombin-induced endothelial cell activation. Chandrasekharan, U.M., Yang, L., Walters, A., Howe, P., DiCorleto, P.E. J. Biol. Chem. (2004) [Pubmed]
  20. CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. Sewer, M.B., Waterman, M.R. J. Biol. Chem. (2003) [Pubmed]
  21. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., Camps, M., Martinou, I., Ashworth, A., Arkinstall, S. J. Biol. Chem. (1997) [Pubmed]
  22. Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. Wu, W., Pew, T., Zou, M., Pang, D., Conzen, S.D. J. Biol. Chem. (2005) [Pubmed]
  23. Jak2 tyrosine kinase mediates angiotensin II-dependent inactivation of ERK2 via induction of mitogen-activated protein kinase phosphatase 1. Sandberg, E.M., Ma, X., VonDerLinden, D., Godeny, M.D., Sayeski, P.P. J. Biol. Chem. (2004) [Pubmed]
  24. p53 Transactivates the phosphatase MKP1 through both intronic and exonic p53 responsive elements. Yang, H., Wu, G.S. Cancer Biol. Ther. (2004) [Pubmed]
  25. Nuclear phosphatases and the proteasome in suppression of STAT1 activity in hepatocytes. Liu, D., Scafidi, J., Prada, A.E., Zahedi, K., Davis, A.E. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  26. KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Hannon, G.J., Casso, D., Beach, D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  27. Dephosphorylation and inactivation of the mitogen-activated protein kinase by a mitogen-induced Thr/Tyr protein phosphatase. Zheng, C.F., Guan, K.L. J. Biol. Chem. (1993) [Pubmed]
  28. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S., Piwnica-Worms, H. Science (1997) [Pubmed]
  29. Catalytic mechanism of Cdc25. Rudolph, J. Biochemistry (2002) [Pubmed]
  30. Cardiopulmonary bypass reduces peripheral microvascular contractile function by inhibition of mitogen-activated protein kinase activity. Khan, T.A., Bianchi, C., Araujo, E.G., Ruel, M., Voisine, P., Li, J., Liddicoat, J.R., Sellke, F.W. Surgery (2003) [Pubmed]
  31. Insulin regulates MAP kinase phosphatase-1 induction in Hirc B cells via activation of both extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK). Byon, J.C., Dadke, S.S., Rulli, S., Kusari, A.B., Kusari, J. Mol. Cell. Biochem. (2001) [Pubmed]
  32. Ionizing radiation and TNF-alpha stimulate gene expression of a Thr/Tyr-protein phosphatase HVH1 and inhibitory factor IkappaB alpha in human squamous carcinoma cells. Kasid, U., Wang, F.H., Whiteside, T.L. Mol. Cell. Biochem. (1997) [Pubmed]
  33. Dual-specificity phosphatase DUSP1 protects overactivation of hypoxia-inducible factor 1 through inactivating ERK MAPK. Liu, C., Shi, Y., Du, Y., Ning, X., Liu, N., Huang, D., Liang, J., Xue, Y., Fan, D. Exp. Cell Res. (2005) [Pubmed]
  34. ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. Lin, Y.W., Chuang, S.M., Yang, J.L. J. Biol. Chem. (2003) [Pubmed]
  35. Inactivation of dual-specificity phosphatases is involved in the regulation of extracellular signal-regulated kinases by heat shock and hsp72. Yaglom, J., O'Callaghan-Sunol, C., Gabai, V., Sherman, M.Y. Mol. Cell. Biol. (2003) [Pubmed]
  36. The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Li, M., Zhou, J.Y., Ge, Y., Matherly, L.H., Wu, G.S. J. Biol. Chem. (2003) [Pubmed]
  37. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. Slack, D.N., Seternes, O.M., Gabrielsen, M., Keyse, S.M. J. Biol. Chem. (2001) [Pubmed]
  38. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress. Wang, J., Yin, D.P., Liu, Y.X., Baer, R., Yin, Y. Cancer Res. (2007) [Pubmed]
  39. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. Tanoue, T., Moriguchi, T., Nishida, E. J. Biol. Chem. (1999) [Pubmed]
  40. Inhibition of MKP-1 expression potentiates JNK related apoptosis in renal cancer cells. Mizuno, R., Oya, M., Shiomi, T., Marumo, K., Okada, Y., Murai, M. J. Urol. (2004) [Pubmed]
WikiGenes - Universities