The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chinchilla

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chinchilla

 

Psychiatry related information on Chinchilla

 

High impact information on Chinchilla

  • Substance P (SP), neurotensin (NT), bombesin (BB), serotonin (5HT), and carbamylcholine (CCH) transiently increase electrogenic anion secretion in chinchilla and chicken ileum [8].
  • The data described here show differences in the expression and characteristics of tyrosinase in cutaneous murine melanocytes grown in culture from normal wild-type strains (C/C); from three albino locus mutants: himalayan (ch/ch), chinchilla (cch/cch), and albino (c/c); and from the double-mutant heterozygous pink-eyed chinchilla (cchp/cp) [9].
  • Using a molecular approach, we cloned a cDNA encoding a homolog of human beta-defensin 3, designated chinchilla beta-defensin-1 (cBD-1), and found by Northern analysis expression of the corresponding mRNA in nasopharyngeal and tongue mucosae as well as skin [10].
  • The sapA mutant was approximately eightfold more sensitive than the parent strain to killing by recombinant chinchilla beta-defensin 1 [11].
  • Similarly, the chinchilla model of middle ear and nasopharyngeal clearance has been used to show that two P5 fimbrin adhesin-derived immunogens, LB1 and lipoprotein D (LPD)-LB1(f)(2,1,3), are highly efficacious as parenteral immunogens [12].
 

Chemical compound and disease context of Chinchilla

 

Biological context of Chinchilla

 

Anatomical context of Chinchilla

 

Associations of Chinchilla with chemical compounds

  • In this study, chinchillas were vaccinated with a dodecavalent preparation of pneumococcal capsular polysaccharides (PCP) to obtain more information on the immunogenicity of these polysaccharide antigens [26].
  • These data demonstrate that active immunization with P6 results in the production of NTHi-specific bactericidal antibody in the chinchilla and also affords a reduction in the incidence of NTHi-induced OM; however, parenteral immunization does not appear to affect the extent or duration of nasopharyngeal colonization by NTHi [27].
  • Skin explants excised from the dorsa of chinchilla or lethal yellow C57BL/6J, Ay/a) mice at 7 to 9 days of age were cultured in the presence of Tp (2 mM), db-cAMP (2 mM), or alpha-MSH (1.0 microgram/ml) [28].
  • In this study, the efficacy of a 10-day course of clarithromycin was evaluated with chinchillas [29].
  • The chinchilla model was utilized to evaluate the efficacy of linezolid against experimental infection due to S. pneumoniae or NTHI [30].
 

Gene context of Chinchilla

  • The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C) [31].
  • Chinchilla livers were found to contain more of the P450 enzymes CYP2E1 and CYP2B than rats or humans [32].
  • Chinchilla sperm only contain enough zinc for one atom to be bound to two protamine 2 molecules [33].
  • In addition, the data show that the P450 enzymes are more active in chinchillas than in rats and humans [32].
  • The hypothesis that the gene responsible for the colour, extreme chinchilla, ce, has spread because of linkage with a major gene for warfarin-resistance, is tested by a linkage backcross [34].
 

Analytical, diagnostic and therapeutic context of Chinchilla

References

  1. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Bouchet, V., Hood, D.W., Li, J., Brisson, J.R., Randle, G.A., Martin, A., Li, Z., Goldstein, R., Schweda, E.K., Pelton, S.I., Richards, J.C., Moxon, E.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Immunogenicity and efficacy of Streptococcus pneumoniae polysaccharide-protein conjugate vaccines against homologous and heterologous serotypes in the chinchilla otitis media model. Giebink, G.S., Meier, J.D., Quartey, M.K., Liebeler, C.L., Le, C.T. J. Infect. Dis. (1996) [Pubmed]
  3. Relative immunogenicity and efficacy of two synthetic chimeric peptides of fimbrin as vaccinogens against nasopharyngeal colonization by nontypeable Haemophilus influenzae in the chinchilla. Bakaletz, L.O., Leake, E.R., Billy, J.M., Kaumaya, P.T. Vaccine (1997) [Pubmed]
  4. Consumption of food, body weight, perineal colour and levels of progesterone in the serum of cyclic female chinchillas. Brookhyser, K.M., Aulerich, R.J. J. Endocrinol. (1980) [Pubmed]
  5. The effect of cyclophosphamide on development of experimental cholesteatoma. Pownell, P.H., Wright, C.G., Robinson, K.S., Meyerhoff, W.L. Arch. Otolaryngol. Head Neck Surg. (1994) [Pubmed]
  6. Frequency difference limens in normal and sensorineural hearing impaired chinchillas. Prosen, C.A., Halpern, D.L., Dallos, P. The Journal of the Acoustical Society of America. (1989) [Pubmed]
  7. Development of hearing loss in kanamycin treated chinchillas. Ryan, A., McGee, T.J. The Annals of otology, rhinology, and laryngology. (1977) [Pubmed]
  8. Secretagogue-induced changes in membrane calcium permeability in chicken and chinchilla ileal mucosa. Selective inhibition by loperamide. Chang, E.B., Brown, D.R., Wang, N.S., Field, M. J. Clin. Invest. (1986) [Pubmed]
  9. Tyrosinases of murine melanocytes with mutations at the albino locus. Halaban, R., Moellmann, G., Tamura, A., Kwon, B.S., Kuklinska, E., Pomerantz, S.H., Lerner, A.B. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  10. Identification and characterization of a mucosal antimicrobial peptide expressed by the chinchilla (Chinchilla lanigera) airway. Harris, R.H., Wilk, D., Bevins, C.L., Munson, R.S., Bakaletz, L.O. J. Biol. Chem. (2004) [Pubmed]
  11. A mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a chinchilla model of otitis media. Mason, K.M., Munson, R.S., Bakaletz, L.O. Infect. Immun. (2005) [Pubmed]
  12. Efficacy of the 26-kilodalton outer membrane protein and two P5 fimbrin-derived immunogens to induce clearance of nontypeable Haemophilus influenzae from the rat middle ear and lungs as well as from the chinchilla middle ear and nasopharynx. Kyd, J.M., Cripps, A.W., Novotny, L.A., Bakaletz, L.O. Infect. Immun. (2003) [Pubmed]
  13. Modification of otitis media following vaccination with the capsular polysaccharide of Streptococcus pneumoniae in chinchillas. Giebink, G.S., Schiffman, G., Petty, K., Quie, P.G. J. Infect. Dis. (1978) [Pubmed]
  14. High-performance liquid chromatographic analysis of trimethoprim and sulfamethoxazole in microliter volumes of chinchilla middle ear effusion and serum. Erdmann, G.R., Canafax, D.M., Giebink, G.S. J. Chromatogr. (1988) [Pubmed]
  15. Interleukin-1 receptor antagonist as an adjunct in the treatment of Haemophilus influenzae otitis media in the chinchilla. Kerschner, J.E., Beste, D.J., Lynch, J.B., Fox, M.C., Kehl, K.S. Laryngoscope (2000) [Pubmed]
  16. Changes of the permeability of round window membrane in otitis media. Ikeda, K., Morizono, T. Arch. Otolaryngol. Head Neck Surg. (1988) [Pubmed]
  17. Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hight, N.G., McFadden, S.L., Henderson, D., Burkard, R.F., Nicotera, T. Hear. Res. (2003) [Pubmed]
  18. Microdialysis studies of the middle ear distribution kinetics of amoxicillin in the awake chinchilla. Huang, Y., Ji, P., Inano, A., Yang, Z., Giebink, G.S., Sawchuk, R.J. Journal of pharmaceutical sciences. (2001) [Pubmed]
  19. Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions. Reyes, S., Ding, D., Sun, W., Salvi, R. Hear. Res. (2001) [Pubmed]
  20. Effects of noise and salicylate on auditory evoked-response thresholds in the chinchilla. Bancroft, B.R., Boettcher, F.A., Salvi, R.J., Wu, J. Hear. Res. (1991) [Pubmed]
  21. Evoked-potential thresholds and cubic distortion product otoacoustic emissions in the chinchilla following carboplatin treatment and noise exposure. Jock, B.M., Hamernik, R.P., Aldrich, L.G., Ahroon, W.A., Petriello, K.L., Johnson, A.R. Hear. Res. (1996) [Pubmed]
  22. Probenecid reduces cochlear effects and perilymph penetration of furosemide in chinchilla. Rybak, L.P., Green, T.P., Juhn, S.K., Morizono, T. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
  23. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex. Pienkowski, M., Harrison, R.V. J. Neurophysiol. (2005) [Pubmed]
  24. Differential calbindin-like immunoreactivity in the brain stem auditory system of the chinchilla. Kelley, P.E., Frisina, R.D., Zettel, M.L., Walton, J.P. J. Comp. Neurol. (1992) [Pubmed]
  25. D-Methionine attenuates inner hair cell loss in carboplatin-treated chinchillas. Lockwood, D.S., Ding, D.L., Wang, J., Salvi, R.J. Audiol. Neurootol. (2000) [Pubmed]
  26. Humoral immune response in chinchillas to the capsular polysaccharides of Streptococcus pneumoniae. Giebink, G.S., Schiffman, G. Infect. Immun. (1983) [Pubmed]
  27. Immunization with outer membrane protein P6 from nontypeable Haemophilus influenzae induces bactericidal antibody and affords protection in the chinchilla model of otitis media. DeMaria, T.F., Murwin, D.M., Leake, E.R. Infect. Immun. (1996) [Pubmed]
  28. Induction of melanization within hair bulb melanocytes in chinchilla mutant by melanogenic stimulants. Imokawa, G., Yada, Y., Hori, Y. J. Invest. Dermatol. (1988) [Pubmed]
  29. Efficacy of clarithromycin treatment of acute otitis media caused by infection with penicillin-susceptible, -intermediate, and -resistant Streptococcus pneumoniae in the chinchilla. Alper, C.M., Doyle, W.J., Seroky, J.T., Bluestone, C.D. Antimicrob. Agents Chemother. (1996) [Pubmed]
  30. Efficacy of linezolid in experimental otitis media. Pelton, S.I., Figueira, M., Albut, R., Stalker, D. Antimicrob. Agents Chemother. (2000) [Pubmed]
  31. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Lamoreux, M.L., Wakamatsu, K., Ito, S. Pigment Cell Res. (2001) [Pubmed]
  32. Susceptibility to the ototoxic properties of toluene is species specific. Davis, R.R., Murphy, W.J., Snawder, J.E., Striley, C.A., Henderson, D., Khan, A., Krieg, E.F. Hear. Res. (2002) [Pubmed]
  33. Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Bench, G., Corzett, M.H., Kramer, C.E., Grant, P.G., Balhorn, R. Mol. Reprod. Dev. (2000) [Pubmed]
  34. A major gene controlling warfarin-resistance in the house mouse. Wallace, M.E., MacSwiney, F.J. The Journal of hygiene. (1976) [Pubmed]
  35. Determination of ciprofloxacin levels in chinchilla middle ear effusion and plasma by high-performance liquid chromatography with fluorescence detection. Lovdahl, M., Steury, J., Russlie, H., Canafax, D.M. J. Chromatogr. (1993) [Pubmed]
  36. Expression of BDNF and TrkB mRNAs in the crista neurosensory epithelium and vestibular ganglia following ototoxic damage. Popper, P., Lopez, I., Beizai, P., Li, G., Kim, J., Micevych, P.E., Honrubia, V. Brain Res. (1999) [Pubmed]
  37. Glutamate-like immunoreactivity during hair cell recovery after gentamicin exposure in the chinchilla vestibular sensory periphery. Chin, K.W., Lopez, I., Lee, S.C., Honrubia, V. Laryngoscope (1999) [Pubmed]
 
WikiGenes - Universities