The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Platyrrhini


High impact information on Platyrrhini


Biological context of Platyrrhini


Anatomical context of Platyrrhini


Associations of Platyrrhini with chemical compounds


Gene context of Platyrrhini

  • These observations suggest that a triplication of the haptoglobin locus occurred after the divergence of the new world monkeys, followed by a deletion of one locus in humans [21].
  • This additional intron is also found in the Surf-5 gene of both Old and New World monkeys, being generated before the divergence of human and prosimians but after the divergence of primates and rodents [22].
  • MHC-G intron 2 from New World monkeys does not show the typical 23 bp deletion found in all other more recent primate species [23].
  • Interesting trends include an unusually low number of synonymous substitutions (Ks) observed among the New World monkey RNase k6 genes [8].
  • Interestingly, acquisition of antiviral activity parallels the evolutionary development of the primate EDN lineage, having emerged some time after the divergence of the Old World from the New World monkeys [24].

Analytical, diagnostic and therapeutic context of Platyrrhini


  1. Blockade of HIV-1 infection of New World monkey cells occurs primarily at the stage of virus entry. LaBonte, J.A., Babcock, G.J., Patel, T., Sodroski, J. J. Exp. Med. (2002) [Pubmed]
  2. Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. Lin, B., Martin, P.R., Solomon, S.G., Grünert, U. Eur. J. Neurosci. (2000) [Pubmed]
  3. Letter: Binding of 25-hydroxy vitamin D2 to plasma protein in New World monkeys. Hay, A.W., Watson, G. Nature (1975) [Pubmed]
  4. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Liman, E.R., Innan, H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. Fullerton, S.M., Bartoszewicz, A., Ybazeta, G., Horikawa, Y., Bell, G.I., Kidd, K.K., Cox, N.J., Hudson, R.R., Di Rienzo, A. Am. J. Hum. Genet. (2002) [Pubmed]
  7. Identification of phylogenetic footprints in primate tumor necrosis factor-alpha promoters. Leung, J.Y., McKenzie, F.E., Uglialoro, A.M., Flores-Villanueva, P.O., Sorkin, B.C., Yunis, E.J., Hartl, D.L., Goldfeld, A.E. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. Ribonuclease k6: chromosomal mapping and divergent rates of evolution within the RNase A gene superfamily. Deming, M.S., Dyer, K.D., Bankier, A.T., Piper, M.B., Dear, P.H., Rosenberg, H.F. Genome Res. (1998) [Pubmed]
  9. Evolution of the primate cytochrome c oxidase subunit II gene. Adkins, R.M., Honeycutt, R.L. J. Mol. Evol. (1994) [Pubmed]
  10. Plasticity of human chromosome 3 during primate evolution. Tsend-Ayush, E., Grützner, F., Yue, Y., Grossmann, B., Hänsel, U., Sudbrak, R., Haaf, T. Genomics (2004) [Pubmed]
  11. Conservation of sequences between human and gorilla lineages: ADP-ribosyltransferase (NAD+) pseudogene 1 and neighboring retroposons. Lyn, D., Istock, N.L., Smulson, M. Gene (1995) [Pubmed]
  12. Characterisation of the GH gene cluster in a new-world monkey, the marmoset (Callithrix jacchus). Wallis, O.C., Wallis, M. J. Mol. Endocrinol. (2002) [Pubmed]
  13. A putative non-cholinergic mechanism in urinary bladders of New but not Old World primates. Craggs, M.D., Rushton, D.N., Stephenson, J.D. J. Urol. (1986) [Pubmed]
  14. Increased dopamine turnover in the putamen after MPTP treatment in common marmosets. Nomoto, M., Iwata, S.I., Kaseda, S., Fukuda, T., Nakagawa, S. Brain Res. (1997) [Pubmed]
  15. Parvalbumin and calbindin D-28k immunoreactivities coexist within cytochrome oxidase-rich compartments of squirrel monkey area 18. Blümcke, I., Celio, M.R. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1992) [Pubmed]
  16. Monoclonal antibodies directed against human Rh antigens in tests with red cells of non-human primates. Blancher, A., Socha, W.W., Roubinet, F., Ruffié, J. Transfusion clinique et biologique : journal de la Société française de transfusion sanguine. (1996) [Pubmed]
  17. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Chrousos, G.P., Renquist, D., Brandon, D., Eil, C., Pugeat, M., Vigersky, R., Cutler, G.B., Loriaux, D.L., Lipsett, M.B. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  18. Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Recanzone, G.H., Merzenich, M.M., Dinse, H.R. Cereb. Cortex (1992) [Pubmed]
  19. Biliary lipids in New World monkeys: dietary cholesterol, fat, and species interactions. Armstrong, M.J., Stephan, Z., Hayes, K.C. Am. J. Clin. Nutr. (1982) [Pubmed]
  20. The transport of 25-hydroxycholecalciferol in a New World monkey. Hay, A.W. Biochem. J. (1975) [Pubmed]
  21. Complex events in the evolution of the haptoglobin gene cluster in primates. McEvoy, S.M., Maeda, N. J. Biol. Chem. (1988) [Pubmed]
  22. The human Surfeit locus. Duhig, T., Ruhrberg, C., Mor, O., Fried, M. Genomics (1998) [Pubmed]
  23. Evolution of MHC-G in primates: a different kind of molecule for each group of species. Arnaiz-Villena, A., Morales, P., Gomez-Casado, E., Castro, M.J., Varela, P., Rojo-Amigo, R., Martinez-Laso, J. J. Reprod. Immunol. (1999) [Pubmed]
  24. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Domachowske, J.B., Bonville, C.A., Dyer, K.D., Rosenberg, H.F. Nucleic Acids Res. (1998) [Pubmed]
  25. Human Endogenous Retrovirus (HERV)-R family in primates: Chromosomal location, gene expression, and evolution. Kim, H.S., Yi, J.M., Hirai, H., Huh, J.W., Jeong, M.S., Jang, S.B., Kim, C.G., Saitou, N., Hyun, B.H., Lee, W.H. Gene (2006) [Pubmed]
  26. Five new or recently discovered (GBV-A) virus species are indigenous to New World monkeys and may constitute a separate genus of the Flaviviridae. Bukh, J., Apgar, C.L. Virology (1997) [Pubmed]
  27. ANT3 and STS are autosomal in prosimian lemurs: implications for the evolution of the pseudoautosomal region. Toder, R., Rappold, G.A., Schiebel, K., Schempp, W. Hum. Genet. (1995) [Pubmed]
WikiGenes - Universities