The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Proanthocyanidins     (2S,3R,4S)-4-[(3R)-2-(3,5- dihydroxy-4...

Synonyms: CCRIS 9188, SureCN4747623, KST-1A2231, AR-1A2859, LS-173715, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Proanthocyanidins

 

High impact information on Proanthocyanidins

 

Chemical compound and disease context of Proanthocyanidins

 

Biological context of Proanthocyanidins

 

Anatomical context of Proanthocyanidins

 

Associations of Proanthocyanidins with other chemical compounds

  • Immunohistochemistry indicates that a reduction in caspase-3 activity and apoptotic cells by the extract, beside other potential action mechanisms of proanthocyanidin, trans-resveratrol, and flavonoid components of the extract, could be responsible for the cardioprotection in ischemic-reperfused myocardium [21].
  • Subfraction F2.4 is composed of proanthocyanidin polymers of prodelphinidin and prorobinetinidin units and gallic acid of molecular weight 2114 Da [22].
  • In an in vitro experiment using human plasma, proanthocyanidin-rich extract added to the plasma inhibited the oxidation of cholesteryl linoleate in LDL, but not in the LDL isolated after the plasma and the extract were incubated in advance [23].
  • Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years [24].
  • Phenylpropanes, flavonol derivatives, biflavones, proanthocyanidins, xanthones, phloroglucinols, some amino acids, naphthodianthrones and essential oil constituents are the natural plant products known from the crude drug of Hypericum perforatum, Hyperici herba [25].
 

Gene context of Proanthocyanidins

 

Analytical, diagnostic and therapeutic context of Proanthocyanidins

References

  1. Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. Howell, A.B., Vorsa, N., Der Marderosian, A., Foo, L.Y. N. Engl. J. Med. (1998) [Pubmed]
  2. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Sato, M., Bagchi, D., Tosaki, A., Das, D.K. Free Radic. Biol. Med. (2001) [Pubmed]
  3. Grape Seed Extract Inhibits In vitro and In vivo Growth of Human Colorectal Carcinoma Cells. Kaur, M., Singh, R.P., Gu, M., Agarwal, R., Agarwal, C. Clin. Cancer Res. (2006) [Pubmed]
  4. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Pataki, T., Bak, I., Kovacs, P., Bagchi, D., Das, D.K., Tosaki, A. Am. J. Clin. Nutr. (2002) [Pubmed]
  5. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Mantena, S.K., Baliga, M.S., Katiyar, S.K. Carcinogenesis (2006) [Pubmed]
  6. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., Lepiniec, L. Plant Cell (2003) [Pubmed]
  7. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Nesi, N., Jond, C., Debeaujon, I., Caboche, M., Lepiniec, L. Plant Cell (2001) [Pubmed]
  8. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Debeaujon, I., Peeters, A.J., Léon-Kloosterziel, K.M., Koornneef, M. Plant Cell (2001) [Pubmed]
  9. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Shahat, A.A., Cos, P., De Bruyne, T., Apers, S., Hammouda, F.M., Ismail, S.I., Azzam, S., Claeys, M., Goovaerts, E., Pieters, L., Vanden Berghe, D., Vlietinck, A.J. Planta Med. (2002) [Pubmed]
  10. Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Matchett, M.D., MacKinnon, S.L., Sweeney, M.I., Gottschall-Pass, K.T., Hurta, R.A. Biochem. Cell Biol. (2005) [Pubmed]
  11. The antiproliferative activity of prodelphinidin B-2 3'-O-gallate from green tea leaf is through cell cycle arrest and Fas-mediated apoptotic pathway in A549 cells. Kuo, P.L., Hsu, Y.L., Lin, T.C., Lin, C.C. Food Chem. Toxicol. (2005) [Pubmed]
  12. Genotoxic and antigenotoxic effects of catechin and tannins from the bark of Hamamelis virginiana L. in metabolically competent, human hepatoma cells (Hep G2) using single cell gel electrophoresis. Dauer, A., Hensel, A., Lhoste, E., Knasmüller, S., Mersch-Sundermann, V. Phytochemistry (2003) [Pubmed]
  13. Cardioprotection of red wine: role of polyphenolic antioxidants. Das, D.K., Sato, M., Ray, P.S., Maulik, G., Engelman, R.M., Bertelli, A.A., Bertelli, A. Drugs under experimental and clinical research. (1999) [Pubmed]
  14. Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Mantena, S.K., Katiyar, S.K. Free Radic. Biol. Med. (2006) [Pubmed]
  15. Proanthocyanidins in health care: current and new trends. Cos, P., De Bruyne, T., Hermans, N., Apers, S., Berghe, D.V., Vlietinck, A.J. Current medicinal chemistry. (2004) [Pubmed]
  16. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKersie, B., Bowley, S., Westcott, N., Coulman, B., Lloyd, A., Gruber, M.Y. Plant Physiol. (2003) [Pubmed]
  17. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Baxter, I.R., Young, J.C., Armstrong, G., Foster, N., Bogenschutz, N., Cordova, T., Peer, W.A., Hazen, S.P., Murphy, A.S., Harper, J.F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Khanna, S., Roy, S., Bagchi, D., Bagchi, M., Sen, C.K. Free Radic. Biol. Med. (2001) [Pubmed]
  19. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Abrahams, S., Lee, E., Walker, A.R., Tanner, G.J., Larkin, P.J., Ashton, A.R. Plant J. (2003) [Pubmed]
  20. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Rios, L.Y., Gonthier, M.P., Rémésy, C., Mila, I., Lapierre, C., Lazarus, S.A., Williamson, G., Scalbert, A. Am. J. Clin. Nutr. (2003) [Pubmed]
  21. Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Bak, I., Lekli, I., Juhasz, B., Nagy, N., Varga, E., Varadi, J., Gesztelyi, R., Szabo, G., Szendrei, L., Bacskay, I., Vecsernyes, M., Antal, M., Fesus, L., Boucher, F., de Leiris, J., Tosaki, A. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  22. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. Ishida, K., de Mello, J.C., Cortez, D.A., Filho, B.P., Ueda-Nakamura, T., Nakamura, C.V. J. Antimicrob. Chemother. (2006) [Pubmed]
  23. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Yamakoshi, J., Kataoka, S., Koga, T., Ariga, T. Atherosclerosis (1999) [Pubmed]
  24. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Booker, F.L., Maier, C.A. Tree Physiol. (2001) [Pubmed]
  25. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Nahrstedt, A., Butterweck, V. Pharmacopsychiatry (1997) [Pubmed]
  26. Grape seed extract proanthocyanidins downregulate HIV-1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells. Nair, M.P., Kandaswami, C., Mahajan, S., Nair, H.N., Chawda, R., Shanahan, T., Schwartz, S.A. Biol. Res. (2002) [Pubmed]
  27. Enhanced radical scavenging activity of genetically modified Arabidopsis seeds. Tohge, T., Matsui, K., Ohme-Takagi, M., Yamazaki, M., Saito, K. Biotechnol. Lett. (2005) [Pubmed]
  28. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Matsui, K., Tanaka, H., Ohme-Takagi, M. Plant Biotechnol. J. (2004) [Pubmed]
  29. In vitro anticancer activity of fruit extracts from Vaccinium species. Bomser, J., Madhavi, D.L., Singletary, K., Smith, M.A. Planta Med. (1996) [Pubmed]
  30. Amelioration of doxorubicin-induced myocardial oxidative stress and immunosuppression by grape seed proanthocyanidins in tumour-bearing mice. Zhang, X.Y., Li, W.G., Wu, Y.J., Gao, M.T. J. Pharm. Pharmacol. (2005) [Pubmed]
  31. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. Tanner, G.J., Francki, K.T., Abrahams, S., Watson, J.M., Larkin, P.J., Ashton, A.R. J. Biol. Chem. (2003) [Pubmed]
  32. Oligomeric proanthocyanidins: naturally occurring O-heterocycles. Ferreira, D., Slade, D. Natural product reports. (2002) [Pubmed]
  33. Determination of proanthocyanidins in grape products by liquid chromatography/mass spectrometric detection under low collision energy. Wu, Q., Wang, M., Simon, J.E. Anal. Chem. (2003) [Pubmed]
  34. Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Vayalil, P.K., Mittal, A., Katiyar, S.K. Carcinogenesis (2004) [Pubmed]
 
WikiGenes - Universities