The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Nuclear Family

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nuclear Family

 

Psychiatry related information on Nuclear Family

 

High impact information on Nuclear Family

  • The disorder is inherited in an autosomal recessive pattern and has been observed only in Old Order Amish families whose ancestors lived in Lancaster County, Pennsylvania. Here we show, by using a genealogy database and automated pedigree software, that 23 nuclear families affected with MCPHA are connected to a single ancestral couple [9].
  • We found the PTPRC mutation to be linked to and associated with the disease in three MS nuclear families [10].
  • Amongst 60 unrelated nuclear families with allergic asthmatic probands, Leu181 is identified in 10 (17%), is maternally inherited in each, and shows a strong association with atopy [11].
  • To test this hypothesis, we examined parent-to-offspring transmission of HLA haplotypes and DR (D-related) alleles in 107 nuclear families in which a child had IDDM [12].
  • Analysis of 150 nuclear families indicated statistically significant linkage between plasma LDL-C concentrations and CYP7, but not LDLR or APOB [13].
 

Chemical compound and disease context of Nuclear Family

 

Biological context of Nuclear Family

  • We have studied 28 nuclear families selected for apparent unilineal transmission of the BPAD phenotype, by using 31 polymorphic markers spanning chromosome 18 [15].
  • The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22-23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families [16].
  • When centromeric markers are available, linkage analysis between the centromere and any marker locus can be performed in nuclear families having one or more trisomic offspring [17].
  • Our previous research involving 167 nuclear families from the Autism Genetic Resource Exchange (AGRE) demonstrated that two intronic SNPs, rs1861972 and rs1861973, in the homeodomain transcription factor gene ENGRAILED 2 (EN2) are significantly associated with autism spectrum disorder (ASD) [18].
  • 5. We performed a linkage disequilibrium analysis of the DRD4 and TH VNTRs in a sample of 145 nuclear families comprised of DSM-IV bipolar probands and their biological parents [19].
 

Anatomical context of Nuclear Family

  • In this work, we describe the fine specificity and cytokine profile of T cell clones (TCC) directed against MOG in three nuclear families, comprised of four individuals affected with MS and their HLA-identical siblings [20].
  • For-locus haplotypes (DRB1; DRB3/4/5; DQA1; DQB1) were derived from 79 B cell lines and the analysis of segregation in 34 nuclear families [21].
 

Associations of Nuclear Family with chemical compounds

  • The association of the A1 allele of the D2 dopamine receptor gene with alcoholism was examined by comparing 32 unrelated white alcoholics with 25 unrelated white controls and by analysis of 17 nuclear families in multigenerational pedigrees of alcoholics in whom the A1 allele was segregating [22].
  • The analysis of prevalent cases included 2,107 Pima Indians from 715 nuclear families [23].
  • We therefore tested the hypothesis that diabetes is more likely to be transmitted from mothers than from fathers using data collected from a large family study of low-income Mexican Americans in San Antonio, Texas. The parents and offspring from 318 different nuclear families attended our medical clinic, where they received a 2-h oral glucose test [24].
  • To better understand these mechanisms, we conducted a segregation analysis of plasma GABA levels in a sample of 157 individuals from 50 nuclear families [25].
  • We used a combination of maximum-likelihood-based statistical genetic methods to explore the contributions of the ecNOS gene and other unmeasured genes to basal NO production measured by its metabolites (NOx: nitrite and nitrate) in 428 members of 108 nuclear families [26].
 

Gene context of Nuclear Family

 

Analytical, diagnostic and therapeutic context of Nuclear Family

References

  1. IDDM patients neither show humoral reactivities against endogenous retroviral envelope protein nor do they differ in retroviral mRNA expression from healthy relatives or normal individuals. Badenhoop, K., Donner, H., Neumann, J., Herwig, J., Kurth, R., Usadel, K.H., Tönjes, R.R. Diabetes (1999) [Pubmed]
  2. Angiotensinogen gene polymorphisms M235T/T174M: no excess transmission to hypertensive Chinese. Niu, T., Yang, J., Wang, B., Chen, W., Wang, Z., Laird, N., Wei, E., Fang, Z., Lindpaintner, K., Rogus, J.J., Xu, X. Hypertension (1999) [Pubmed]
  3. HLA class II associated risk and protection against multiple sclerosis-a Finnish family study. Laaksonen, M., Pastinen, T., Sjöroos, M., Kuokkanen, S., Ruutiainen, J., Sumelahti, M.L., Reijonen, H., Salonen, R., Wikström, J., Panelius, M., Partanen, J., Tienari, P.J., Ilonen, J. J. Neuroimmunol. (2002) [Pubmed]
  4. Diagnosis of fragile X syndrome by direct mutation analysis. Väisänen, M.L., Kähkönen, M., Leisti, J. Hum. Genet. (1994) [Pubmed]
  5. International comparison of the prevalence of psychosomatic disorders in schizophrenic patients. Ramsay, R.A., Krakowski, A.J., Rydzynski, Z., Jarosz, M., Engelsmann, F., Ananth, J. Psychotherapy and psychosomatics. (1982) [Pubmed]
  6. Theories of social selection in human populations. Yokoyama, S. Am. J. Hum. Genet. (1983) [Pubmed]
  7. Segregation analysis of attention deficit hyperactivity disorder. Maher, B.S., Marazita, M.L., Moss, H.B., Vanyukov, M.M. Am. J. Med. Genet. (1999) [Pubmed]
  8. Association study of CREB1 and childhood-onset mood disorders. Burcescu, I., Wigg, K., King, N., Vetró, A., Kiss, E., Katay, L., Kennedy, J.L., Kovacs, M., Barr, C.L. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2005) [Pubmed]
  9. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Rosenberg, M.J., Agarwala, R., Bouffard, G., Davis, J., Fiermonte, G., Hilliard, M.S., Koch, T., Kalikin, L.M., Makalowska, I., Morton, D.H., Petty, E.M., Weber, J.L., Palmieri, F., Kelley, R.I., Schäffer, A.A., Biesecker, L.G. Nat. Genet. (2002) [Pubmed]
  10. A point mutation in PTPRC is associated with the development of multiple sclerosis. Jacobsen, M., Schweer, D., Ziegler, A., Gaber, R., Schock, S., Schwinzer, R., Wonigeit, K., Lindert, R.B., Kantarci, O., Schaefer-Klein, J., Schipper, H.I., Oertel, W.H., Heidenreich, F., Weinshenker, B.G., Sommer, N., Hemmer, B. Nat. Genet. (2000) [Pubmed]
  11. Association between atopy and variants of the beta subunit of the high-affinity immunoglobulin E receptor. Shirakawa, T., Li, A., Dubowitz, M., Dekker, J.W., Shaw, A.E., Faux, J.A., Ra, C., Cookson, W.O., Hopkin, J.M. Nat. Genet. (1994) [Pubmed]
  12. Preferential transmission of diabetic alleles within the HLA gene complex. Vadheim, C.M., Rotter, J.I., Maclaren, N.K., Riley, W.J., Anderson, C.E. N. Engl. J. Med. (1986) [Pubmed]
  13. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. Wang, J., Freeman, D.J., Grundy, S.M., Levine, D.M., Guerra, R., Cohen, J.C. J. Clin. Invest. (1998) [Pubmed]
  14. Crack use in Puerto Rico: evidence of a recent epidemic. Matos, T.D., Robles, R.R., Marrero, C.A., Colón, H.M. Puerto Rico health sciences journal. (1996) [Pubmed]
  15. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Stine, O.C., Xu, J., Koskela, R., McMahon, F.J., Gschwend, M., Friddle, C., Clark, C.D., McInnis, M.G., Simpson, S.G., Breschel, T.S. Am. J. Hum. Genet. (1995) [Pubmed]
  16. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Cornélis, F., Fauré, S., Martinez, M., Prud'homme, J.F., Fritz, P., Dib, C., Alves, H., Barrera, P., de Vries, N., Balsa, A., Pascual-Salcedo, D., Maenaut, K., Westhovens, R., Migliorini, P., Tran, T.H., Delaye, A., Prince, N., Lefevre, C., Thomas, G., Poirier, M., Soubigou, S., Alibert, O., Lasbleiz, S., Fouix, S., Bouchier, C., Lioté, F., Loste, M.N., Lepage, V., Charron, D., Gyapay, G., Lopes-Vaz, A., Kuntz, D., Bardin, T., Weissenbach, J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. DSLINK: a computer program for gene-centromere linkage analysis in families with a trisomic offspring. Halloran, S.L., Chakravarti, A. Am. J. Hum. Genet. (1987) [Pubmed]
  18. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Benayed, R., Gharani, N., Rossman, I., Mancuso, V., Lazar, G., Kamdar, S., Bruse, S.E., Tischfield, S., Smith, B.J., Zimmerman, R.A., Dicicco-Bloom, E., Brzustowicz, L.M., Millonig, J.H. Am. J. Hum. Genet. (2005) [Pubmed]
  19. Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4. Muglia, P., Petronis, A., Mundo, E., Lander, S., Cate, T., Kennedy, J.L. Mol. Psychiatry (2002) [Pubmed]
  20. The human T cell response to myelin oligodendrocyte glycoprotein: a multiple sclerosis family-based study. Koehler, N.K., Genain, C.P., Giesser, B., Hauser, S.L. J. Immunol. (2002) [Pubmed]
  21. Alleles at four HLA class II loci determined by oligonucleotide hybridization and their associations in five ethnic groups. Fernandez-Viña, M.A., Gao, X.J., Moraes, M.E., Moraes, J.R., Salatiel, I., Miller, S., Tsai, J., Sun, Y.P., An, J.B., Layrisse, Z. Immunogenetics (1991) [Pubmed]
  22. Alcoholism and alleles of the human D2 dopamine receptor locus. Studies of association and linkage. Parsian, A., Todd, R.D., Devor, E.J., O'Malley, K.L., Suarez, B.K., Reich, T., Cloninger, C.R. Arch. Gen. Psychiatry (1991) [Pubmed]
  23. Segregation analysis of diabetic nephropathy in Pima Indians. Imperatore, G., Knowler, W.C., Pettitt, D.J., Kobes, S., Bennett, P.H., Hanson, R.L. Diabetes (2000) [Pubmed]
  24. Is there an excess in maternal transmission of NIDDM? Mitchell, B.D., Kammerer, C.M., Reinhart, L.J., Stern, M.P., MacCluer, J.W. Diabetologia (1995) [Pubmed]
  25. Evidence for the segregation of a major gene for human plasma GABA levels. Petty, F., Fulton, M., Kramer, G.L., Kram, M., Davis, L.L., Rush, A.J. Mol. Psychiatry (1999) [Pubmed]
  26. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Wang, X.L., Mahaney, M.C., Sim, A.S., Wang, J., Wang, J., Blangero, J., Almasy, L., Badenhop, R.B., Wilcken, D.E. Arterioscler. Thromb. Vasc. Biol. (1997) [Pubmed]
  27. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Rybicki, B.A., Walewski, J.L., Maliarik, M.J., Kian, H., Iannuzzi, M.C. Am. J. Hum. Genet. (2005) [Pubmed]
  28. Attention deficit hyperactivity disorder and the gene for dopamine Beta-hydroxylase. Wigg, K., Zai, G., Schachar, R., Tannock, R., Roberts, W., Malone, M., Kennedy, J.L., Barr, C.L. The American journal of psychiatry. (2002) [Pubmed]
  29. Genetic control of bone density and turnover: role of the collagen 1alpha1, estrogen receptor, and vitamin D receptor genes. Brown, M.A., Haughton, M.A., Grant, S.F., Gunnell, A.S., Henderson, N.K., Eisman, J.A. J. Bone Miner. Res. (2001) [Pubmed]
  30. Glutamate receptor, ionotropic, N-methyl D-aspartate 2A (GRIN2A) gene as a positional candidate for attention-deficit/hyperactivity disorder in the 16p13 region. Adams, J., Crosbie, J., Wigg, K., Ickowicz, A., Pathare, T., Roberts, W., Malone, M., Schachar, R., Tannock, R., Kennedy, J.L., Barr, C.L. Mol. Psychiatry (2004) [Pubmed]
  31. Tests of linkage and association of the COL1A2 gene with bone phenotypes' variation in Chinese nuclear families. Deng, F.Y., Liu, M.Y., Li, M.X., Lei, S.F., Qin, Y.J., Zhou, Q., Liu, Y.J., Deng, H.W. Bone (2003) [Pubmed]
  32. Segregation of urine calcium excretion in families ascertained for nephrolithiasis: evidence for a major gene. Loredo-Osti, J.C., Roslin, N.M., Tessier, J., Fujiwara, T.M., Morgan, K., Bonnardeaux, A. Kidney Int. (2005) [Pubmed]
  33. Atrichia with papular lesions resulting from compound heterozygous mutations in the hairless gene: A lesson for differential diagnosis of alopecia universalis. Henn, W., Zlotogorski, A., Lam, H., Martinez-Mir, A., Zaun, H., Christiano, A.M. J. Am. Acad. Dermatol. (2002) [Pubmed]
  34. ATF-like element contributes to hepatic activation of human angiotensinogen promoter. Yanai, K., Murakami, K., Fukamizu, A. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
 
WikiGenes - Universities