The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

HLA-DQA1  -  major histocompatibility complex, class II...

Homo sapiens

Synonyms: CD, CELIAC1, DC-1 alpha chain, DC-alpha, DQ-A1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HLA-DQA1

 

Psychiatry related information on HLA-DQA1

 

High impact information on HLA-DQA1

  • Gluten-reactive T cells can be isolated from small intestinal biopsies of celiac patients but not of non-celiac controls [9].
  • We used a three step genome screening protocol to identify loci that contribute to celiac disease in the western counties of ireland, a region with the highest prevalence of celiac disease in the world [10].
  • Our study localizes and provides strong evidence for linkage of at least one non-HLA locus to celiac disease and may serve as a prototype for an efficient approach to screening the human genome for loci that contribute to complex diseases [10].
  • Maternal-fetal disparity in alleles of HLA- DRB1, DQA, and DQB occurred in 26 of 34 pregnancies characterized by remission or improvement (76 percent), as compared with 3 of 12 pregnancies characterized by active arthritis (25 percent) (odds ratio, 9.7; P = 0.003) [11].
  • In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope [12].
 

Chemical compound and disease context of HLA-DQA1

 

Biological context of HLA-DQA1

 

Anatomical context of HLA-DQA1

  • T lymphocyte recognition of a celiac disease-associated cis- or trans-encoded HLA-DQ alpha/beta-heterodimer [22].
  • However, its high degree of sequence similarity to DQA1, the fact that it is highly evolutionarily conserved, and the recent demonstration of its transcription in some cell lines suggest that a DQA2 alpha-chain may be expressed [23].
  • Among other possibilities, it has been proposed that an unbalanced expression of IDDM-associated DQA, and/or DQB alleles may lead to alterations in the composition of alpha beta heterodimers and preferential expression of a particular heterodimer on the antigen-presenting cell surface, leading to self-recognition [24].
  • Villous morphology, jejunal intraepithelial lymphocytes, and mucosal HLA-DR were evaluated and DQA and DQB alleles, serum antiendomysial, and antigliadin antibodies were examined [25].
  • Ninety children and adolescents with autoimmune thyroid disease were screened for celiac disease [26].
 

Associations of HLA-DQA1 with chemical compounds

  • Allele frequencies for polymarker, HLA-DQA1, Ig-JH, D17S30, ApoB and D1S80 loci and population genetic parameters were obtained from a sample of 501 unrelated individuals born in the northwestern Federal Region of Russia [27].
  • Amplification of the second exon of HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes was performed by PCR, and Dot-blot analysis with biotin-labelled sequence-specific oligonucleotide probes was used for HLA typing [28].
  • The ds/dn ratios for DQA1 and DQB1 alleles are lower than for the most polymorphic DRB genes [29].
  • An arginine at position 52 on either DQA1 allele was significantly more frequent in patients with IDDM (94%), GD (80%), and AD (89%) compared with controls (66%) [5].
  • Of the MS patients, 99% compared to 79% of the controls carried DQA1 alleles encoding glutamine at residue 34, while 97% of the MS patients compared to 72% of the controls carried DQB1 alleles encoding DQ beta chains sharing long polymorphic stretches [3].
 

Physical interactions of HLA-DQA1

  • Calcium activation of tissue transglutaminase in radioligand binding and enzyme-linked autoantibody immunoassays in childhood celiac disease [30].
  • Measurement of the apparent dissociation constants demonstrated a two- to fivefold difference in DEK binding to the DQA1 Y-box sequence in comparison with other class II MHC Y-box sequences [31].
 

Regulatory relationships of HLA-DQA1

  • Thus, the celiac disease associated DQA1 and DQB1 genes encode a functionally expressed DQ alpha/beta heterodimer [22].
  • Patients with Addison's disease did not differ significantly from controls, but those carrying the suceptibility marker, human leukocyte antigen DQA1*0501, were significantly more CTLA4 Ala17 positive than controls with the same DQA1 allele (P < 0.05) [32].
  • Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes [33].
  • Comparison of DQA1 and DQB1 alleles in 60 children with common acute lymphoblastic leukaemia (c-ALL) and 78 newborn infant control subjects revealed that male but not female patients had a higher frequency of DQA1*0101/*0104 and DQB1*0501 than appropriate control subjects [34].
  • CONCLUSION AND SIGNIFICANCE: HLA-DQA1 and -DQB1 genes may be involved in the development of Artemisia pollen-induced allergic rhinitis [35].
 

Other interactions of HLA-DQA1

  • DNA was extracted from blood samples and studied by Southern blot hybridisation techniques and the following probe enzyme combinations: HLA-DQB1; Taq 1, HLA-DQA1; Taq 1, HLA-DRA; Bgl II, insulin gene hypervariable region; Pvu II and the switch region of the immunoglobulin IgM heavy chain gene (S mu); Sac I [36].
  • Patients and controls were typed for HLA-B, DRB1, DQB1, and DQA1, and for MICA transmembrane polymorphism [37].
  • We have investigated the distribution of HLA class II alleles and haplotypes in 107 Korean families (207 parents and 291 children) for the HLA-DRB1, DRB3/B4/B5, DQA1, DQB1 and DPB1 loci [38].
  • HLA-DQA2 carries an empty integration target site in place of the Alu, thereby suggesting that the insertion of Alu near HLA-DQA1 was preceded by the separation of the two genes [39].
  • The HLA-DRB4 gene is present in half of the Spanish HLA-DQ2-negative celiac patients [40].
 

Analytical, diagnostic and therapeutic context of HLA-DQA1

  • A sample of 370 individuals was HLA serologically typed; 91 of them were typed for Complement alleles and 47 were DNA typed using PCR amplification and oligonucleotide probes for the HLA-DQA1 locus [41].
  • DNA profiling in two Alaskan Native populations using HLA-DQA1, PM, and D1S80 loci [42].
  • A comparison of two types of data for DQA1 and DRB1 showed that serotyping led to generally lower estimates of S [43].
  • Control group consisted of 196 (DQA), 143 (DQB1) and 130 (DRB1) unrelated blood donors aged 19-55 years old irrespective of their age or sex [44].
  • To better define class II HLA associations with the antitopo I response, 161 PSS patients (132 Caucasians and 29 American blacks) were studied for antitopo I autoantibodies by immunodiffusion and immunoblotting, and their HLA-DRB1, DRB3, DQA1, and DQB1 alleles were determined by restriction fragment length polymorphic analysis and DNA oligotyping [45].

References

  1. HLA-DQA1*1 contributes to resistance and A1*3 confers susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Yamagata, K., Hanafusa, T., Nakajima, H., Sada, M., Amemiya, H., Noguchi, T., Tanaka, T., Kono, N., Tarui, S. Diabetologia (1991) [Pubmed]
  2. DNA sequence analysis and restriction fragment length polymorphism (RFLP) typing of the HLA-DQw2 alleles associated with dermatitis herpetiformis. Otley, C.C., Wenstrup, R.J., Hall, R.P. J. Invest. Dermatol. (1991) [Pubmed]
  3. HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis. Spurkland, A., Rønningen, K.S., Vandvik, B., Thorsby, E., Vartdal, F. Hum. Immunol. (1991) [Pubmed]
  4. HLA-DQA1, -DQB1 and -DRB1 genotyping in Japanese pemphigus vulgaris patients by the PCR-RFLP method. Niizeki, H., Inoko, H., Mizuki, N., Inamoto, N., Watababe, K., Hashimoto, T., Nishikawa, T. Tissue Antigens (1994) [Pubmed]
  5. Susceptibility and resistance alleles of human leukocyte antigen (HLA) DQA1 and HLA DQB1 are shared in endocrine autoimmune disease. Badenhoop, K., Walfish, P.G., Rau, H., Fischer, S., Nicolay, A., Bogner, U., Schleusener, H., Usadel, K.H. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  6. Forensic application of a rapid and quantitative DNA sex test by amplification of the X-Y homologous gene amelogenin. Mannucci, A., Sullivan, K.M., Ivanov, P.L., Gill, P. Int. J. Legal Med. (1994) [Pubmed]
  7. Celiac disease, brain atrophy, and dementia. Collin, P., Pirttilä, T., Nurmikko, T., Somer, H., Erilä, T., Keyriläinen, O. Neurology (1991) [Pubmed]
  8. Eating disorders and celiac disease: a case report. Yucel, B., Ozbey, N., Demir, K., Polat, A., Yager, J. The International journal of eating disorders. (2006) [Pubmed]
  9. Molecular basis of celiac disease. Sollid, L.M. Annu. Rev. Immunol. (2000) [Pubmed]
  10. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Zhong, F., McCombs, C.C., Olson, J.M., Elston, R.C., Stevens, F.M., McCarthy, C.F., Michalski, J.P. Nat. Genet. (1996) [Pubmed]
  11. Maternal-fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis. Nelson, J.L., Hughes, K.A., Smith, A.G., Nisperos, B.B., Branchaud, A.M., Hansen, J.A. N. Engl. J. Med. (1993) [Pubmed]
  12. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Anderson, R.P., Degano, P., Godkin, A.J., Jewell, D.P., Hill, A.V. Nat. Med. (2000) [Pubmed]
  13. Extensive study of DRB, DQA, and DQB gene polymorphism in 23 DR2-positive, insulin-dependent diabetes mellitus patients. Zeliszewski, D., Tiercy, J.M., Boitard, C., Gu, X.F., Loche, M., Krishnamoorthy, R., Simonney, N., Elion, J., Bach, J.F., Mach, B. Hum. Immunol. (1992) [Pubmed]
  14. Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetylcysteine. Kalebic, T., Kinter, A., Poli, G., Anderson, M.E., Meister, A., Fauci, A.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  15. Insulin-dependent diabetes mellitus during alpha-interferon therapy for chronic viral hepatitis. Fabris, P., Betterle, C., Greggio, N.A., Zanchetta, R., Bosi, E., Biasin, M.R., de Lalla, F. J. Hepatol. (1998) [Pubmed]
  16. DQA1 and DQB1 heterodimers in insulin-dependent diabetes mellitus: a genetic-epidemiological study in Finland. DiMe Study Group. Tuomilehto-Wolf, E., Tuomilehto, J., Hitman, G.A. Ann. Med. (1992) [Pubmed]
  17. Organic thiophosphate WR-151327 suppresses expression of HIV in chronically infected cells. Kalebic, T., Schein, P.S. AIDS Res. Hum. Retroviruses (1994) [Pubmed]
  18. The human major histocompatibility complex class II HLA-DRB1 and HLA-DQA1 genes are separated by a CTCF-binding enhancer-blocking element. Majumder, P., Gomez, J.A., Boss, J.M. J. Biol. Chem. (2006) [Pubmed]
  19. Description of an HLA-DQA1 RFLP allele [DQ alpha 4] defining DQw4/DRw8-bearing haplotypes. Martinez-Laso, J., Vicario, J.L., Regueiro, J.R., Corell, A., Paz-Artal, E., Arnaiz-Villena, A. Nucleic Acids Res. (1989) [Pubmed]
  20. A new HLA-DQA1 RFLP allele [DQ alpha 3b] distinguishes between DQ alpha genes of DQw2-DR3 and DQw3-DR5 haplotypes. Martinez-Laso, J., Vicario, J.L., Corell, A., Morales, P., Regueiro, J.R., Arnaiz-Villena, A. Nucleic Acids Res. (1989) [Pubmed]
  21. Increased rate of spontaneous mitotic recombination in T lymphocytes from a Bloom's syndrome patient using a flow-cytometric assay at HLA-A locus. Kusunoki, Y., Hayashi, T., Hirai, Y., Kushiro, J., Tatsumi, K., Kurihara, T., Zghal, M., Kamoun, M.R., Takebe, H., Jeffreys, A. Jpn. J. Cancer Res. (1994) [Pubmed]
  22. T lymphocyte recognition of a celiac disease-associated cis- or trans-encoded HLA-DQ alpha/beta-heterodimer. Lundin, K.E., Sollid, L.M., Qvigstad, E., Markussen, G., Gjertsen, H.A., Ek, J., Thorsby, E. J. Immunol. (1990) [Pubmed]
  23. The nonpolymorphic MHC class II isotype, HLA-DQA2, is expressed on the surface of B lymphoblastoid cells. Rudy, G.B., Lew, A.M. J. Immunol. (1997) [Pubmed]
  24. Differential expression of insulin-dependent diabetes mellitus-associated HLA-DQA1 alleles in vivo. Maffei, A., Harris, P.E., Reed, E.F., Del Pozzo, G., Ciullo, M., Suciu-Foca, N., Guardiola, J. Eur. J. Immunol. (1997) [Pubmed]
  25. Celiac disease and markers of celiac disease latency in patients with primary Sjögren's syndrome. Iltanen, S., Collin, P., Korpela, M., Holm, K., Partanen, J., Polvi, A., Mäki, M. Am. J. Gastroenterol. (1999) [Pubmed]
  26. Celiac disease in children with autoimmune thyroid disease. Larizza, D., Calcaterra, V., De Giacomo, C., De Silvestri, A., Asti, M., Badulli, C., Autelli, M., Coslovich, E., Martinetti, M. J. Pediatr. (2001) [Pubmed]
  27. Polymorphism of LDLR, GYPA, HBGG, D7S8, GC, HLA-DQA1, Ig-JH, D17S30, ApoB and D1S80 loci in northwestern Russians. Smolyanitsky, A.G., Smolyanitskaya, A.I., Popov, V.L., Zaslavsky, G.I., Khromov-Borisov, N.N. Forensic Sci. Int. (2003) [Pubmed]
  28. Evidence of genetic heterogeneity in IBD: 1. The interleukin-1 receptor antagonist in the predisposition to suffer from ulcerative colitis. Bioque, G., Bouma, G., Crusius, J.B., Koutroubakis, I., Kostense, P.J., Meuwissen, S.G., Peña, A.S. European journal of gastroenterology & hepatology. (1996) [Pubmed]
  29. Evolution of Mhc class II polymorphism: the rise and fall of class II gene function in primates. Bergström, T., Gyllensten, U. Immunol. Rev. (1995) [Pubmed]
  30. Calcium activation of tissue transglutaminase in radioligand binding and enzyme-linked autoantibody immunoassays in childhood celiac disease. Agardh, D., Roth, B., Lernmark, A., Stenberg, P. Clin. Chim. Acta (2005) [Pubmed]
  31. DEK binding to class II MHC Y-box sequences is gene- and allele-specific. Adams, B.S., Cha, H.C., Cleary, J., Haiying, T., Wang, H., Sitwala, K., Markovitz, D.M. Arthritis Res. Ther. (2003) [Pubmed]
  32. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison's disease. Donner, H., Braun, J., Seidl, C., Rau, H., Finke, R., Ventz, M., Walfish, P.G., Usadel, K.H., Badenhoop, K. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  33. Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Bister, V., Kolho, K.L., Karikoski, R., Westerholm-Ormio, M., Savilahti, E., Saarialho-Kere, U. Scand. J. Gastroenterol. (2005) [Pubmed]
  34. Evidence that an HLA-DQA1-DQB1 haplotype influences susceptibility to childhood common acute lymphoblastic leukaemia in boys provides further support for an infection-related aetiology. Taylor, G.M., Dearden, S., Payne, N., Ayres, M., Gokhale, D.A., Birch, J.M., Blair, V., Stevens, R.F., Will, A.M., Eden, O.B. Br. J. Cancer (1998) [Pubmed]
  35. Association between HLA class II locus and the susceptibility to Artemisia pollen-induced allergic rhinitis in Chinese population. Wang, M., Xing, Z.M., Yu, D.L., Yan, Z., Yu, L.S. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (2004) [Pubmed]
  36. A genetic study of retinopathy in south Indian type 2 (non-insulin-dependent) diabetic patients. Hawrami, K., Mohan, R., Mohan, V., Hitman, G.A. Diabetologia (1991) [Pubmed]
  37. MHC class I region plays a role in the development of diverse clinical forms of celiac disease in a Saharawi population. López-Vázquez, A., Fuentes, D., Rodrigo, L., González, S., Moreno, M., Fernández, E., Martínez-Borra, J., López-Larrea, C. Am. J. Gastroenterol. (2004) [Pubmed]
  38. HLA class II allele and haplotype frequencies in Koreans based on 107 families. Song, E.Y., Park, M.H., Kang, S.J., Park, H.J., Kim, B.C., Tokunaga, K., Akaza, T., Juji, T. Tissue Antigens (2002) [Pubmed]
  39. A SINE insertion provides information on the divergence of the HLA-DQA1 and HLA-DQA2 genes. Del Pozzo, G., Guardiola, J. Immunogenetics (1990) [Pubmed]
  40. The HLA-DRB4 gene is present in half of the Spanish HLA-DQ2-negative celiac patients. Garrote, J.A., Arranz, E., Blanco-Quirós, A. Immunogenetics (2000) [Pubmed]
  41. HLA alleles in the population of Cartagena (Colombia). Caraballo, L.R., Marrugo, J., Erlich, H., Pastorizo, M. Tissue Antigens (1992) [Pubmed]
  42. DNA profiling in two Alaskan Native populations using HLA-DQA1, PM, and D1S80 loci. Walkinshaw, M., Strickland, L., Hamilton, H., Denning, K., Gayley, T. J. Forensic Sci. (1996) [Pubmed]
  43. A method for estimating the intensity of overdominant selection from the distribution of allele frequencies. Slatkin, M., Muirhead, C.A. Genetics (2000) [Pubmed]
  44. Associations between HLA class II alleles and type 1 diabetes mellitus in the Slovak population. Buc, M., Bucová, M., Javor, J., Krivosíkova, M., Stuchlíkova, M., Shawkatova, I., Michalková, D., Barák, L., Jancová, E., Petrek, M. Endocrine regulations. (2006) [Pubmed]
  45. Association of amino acid sequences in the HLA-DQB1 first domain with antitopoisomerase I autoantibody response in scleroderma (progressive systemic sclerosis). Reveille, J.D., Durban, E., MacLeod-St Clair, M.J., Goldstein, R., Moreda, R., Altman, R.D., Arnett, F.C. J. Clin. Invest. (1992) [Pubmed]
 
WikiGenes - Universities