The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

BRCA2  -  breast cancer 2, early onset

Homo sapiens

Synonyms: BRCC2, BROVCA2, Breast cancer type 2 susceptibility protein, FACD, FAD, ...
 
 
 
 Deloukas,  Clegg,  Story,  Ashwell,  Kuenen-Boumeester,  Earthrowl,  West,  Bird,  Wilming,  Diez,  Searle,  Burrill,  Wray,  Faulkner,  Keenan,  Brown,  Tester,  Burton,  Buchholz,  Schnieden,  Wright,  Gilbert,  Sarrió,  Ashcroft,  Steward,  Young,  John,  Whittemore,  Tracey,  Brown,  Mashreghi-Mohammadi,  Butow,  Oliver,  Haile,  Leongamornlert,  Mills,  Howden,  Thomas,  Lloyd,  Kenemans,  Ward,  Whitehead,  Friedlander,  Dhami,  Wall,  Ghori,  Lloyd,  Cazorla,  Tubby,  Clee,  Heath,  Scott,  Hussain,  Laird,  Carter,  Boyd,  Meijer-Heijboer,  Grafham,  Gilson,  Garnett,  Bannerjee,  Sánchez,  Lovell,  Holden,  Milne,  Tran,  Ellington,  Bailey,  Chapman,  Alonso,  Meiser,  Kimberley,  Hunt,  Martin,  Daly,  Rivas,  Phillimore,  Dunham,  Ross,  Cobley,  Jenkins,  Brock,  Barratt,  Southey,  Clark,  Osorio,  Timmermans,  Burford,  Corby,  Hopper,  Griffiths,  Babbage,  Garner,  Avizonis,  Berns,  Ambrose,  Smith,  Hall,  French,  Griffiths-Jones,  Huckle,  Sehra,  Coville,  Verheijen,  Carder,  Klijn,  Verstraeten,  Frankish,  Elledge,  Terry,  Dunn,  Hunt,  Felberg,  Dirkzwager-Kiel,  Nickerson,  Bergh,  Smith,  Geara,  Barroso,  Watson,  Gaffney,  van den Ouweland,  Beasley,  Langford,  Shownkeen,  McLaren,  Beare,  Haffty,  Johnson,  Clarke,  Verhoog,  Andrulis,  Tucker,  McGuire,  Bentley,  Willey,  Gribble,  Rodríguez,  Cigudosa,  Bray-Allen,  Beck,  Hammond,  Hart,  Marshall,  Sulston,  Porter,  Pelan,  Bates,  Rogers,  Palacios,  Milne,  Frankland,  Wu,  Ainscough,  Johnson,  West,  Almeida,  Bagguley,  Lawlor,  Neuhausen,  Benítez,  Hunt,  Ashurst,  Barlow,  Tucker,  Knight,  Godwin,  Moore,  Durbin,  Hubbard,  Hemmersmeier,  Lerma,  Honrado,  van der Kwast,  King,  Collins,  Harley,  Dunham,  Rice,  Andrews,  Sycamore,  Wallis,  Peck,  Loveland,  Giles,  Clamp,  Chang,  Jones,  Skuce,  Pearce,  Coulson,  Tromans,  Thomas,  Matthews,  Brown,  Palmer,  Howe,  Kay,  McMurray,  
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of BRCA2

 

Psychiatry related information on BRCA2

 

High impact information on BRCA2

  • The significant risk factor for development of ovarian cancer is advancing age, although there is clearly a genetic predisposition--often associated with the BRCA1 and BRCA2 genes--in at least 5% to 10% of all epithelial ovarian cancers [11].
  • Two new studies show that the Fanconi anemia complementation group N results from biallelic mutations in PALB2, which encodes a recently identified interaction partner of the breast cancer susceptibility protein BRCA2 [12].
  • Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies [13].
  • PALB2-deficient cells showed hypersensitivity to cross-linking agents and lacked chromatin-bound BRCA2; these defects were corrected upon ectopic expression of PALB2 or by spontaneous reversion [14].
  • Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers [15].
 

Chemical compound and disease context of BRCA2

 

Biological context of BRCA2

 

Anatomical context of BRCA2

 

Associations of BRCA2 with chemical compounds

  • Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A [29].
  • This is likely to lead to changes in progesterone signaling in hormone-dependent tissues, which may be a factor in the increased risk of cancer in these tissues in women with germ-line BRCA1 or BRCA2 mutations [29].
  • The three steroid hormone receptors were expressed in about half of the BRCA2-mutated specimens studied [30].
  • FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation [31].
  • No major sequence variation in BRCA2 gene was observed except for G203A at 5' UTR of exon 2, a common population polymorphism in two Goan patients who also showed silent nucleotide change for amino acid serine at codon 1436 of BRCA1 gene [32].
 

Physical interactions of BRCA2

  • A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51 [33].
  • We found that FANCG was capable of binding to two separate sites in the BRCA2 protein, located either side of the BRC repeats [34].
  • However, non-mutational functional suppression could result from various mechanisms, such as hypermethylation of the BRCA1 promoter or binding of BRCA2 by EMSY [35].
  • The BRCA2 gene product functionally interacts with p53 and RAD51 [25].
  • BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage [36].
  • BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange [37].
 

Enzymatic interactions of BRCA2

  • The results suggest that BRCA2 protein might be involved in a mitotic checkpoint in vivo after it has been phosphorylated by hBUBR1 [38].
 

Co-localisations of BRCA2

  • We further show that chromatin-bound BRCA2 colocalizes with BCCIP nuclear foci and that most radiation-induced RAD51 foci colocalize with BCCIP [39].
 

Regulatory relationships of BRCA2

 

Other interactions of BRCA2

  • Our results indicate that somatic BRCA2 mutations, like somatic mutations in the BRCA1 gene, are very rare in primary breast cancers [21].
  • This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway [2].
  • Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes [33].
  • BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription [16].
  • Mutations in BRCA2, which participates in homologous recombination (HR), are the underlying cause in some FA patients [45].
 

Analytical, diagnostic and therapeutic context of BRCA2

  • With respect to BRCA2 IDCs and control group, non-BRCA1/2 tumors were of lower grade and had a lower proliferation rate [46].
  • Five-year disease-free survival (DFS) and overall survival (OS) were significantly decreased in BRCA2-positive patients (67% versus 28% for BRCA2-negative versus positive patients, respectively, P = 0.017 for DFS; 86% versus 25%, P = 0.006 for OS) [28].
  • There was no apparent difference in the radiosensitivity between cells with BRCA1 vs. BRCA2 mutations (p = 0.769), although the small sample size minimizes the certainty of this observation [47].
  • After microdissection of tumor and normal tissue from paraffin-embedded tissue blocks, DNA was extracted and samples were examined for LOH at chromosomal segments encompassing BRCA1 and BRCA2 [48].
  • OBJECTIVE.: From analysis of pre-cancer ovarian tissues obtained from prophylactic oophorectomies, several studies reported the increased ovarian morphological changes in high-risk ovaries, but whether these morphological changes are associated with BRCA1/BRCA2 genotypes or are cancer precursors is controversial [49].

References

  1. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., Berns, A. Nat. Genet. (2001) [Pubmed]
  2. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Meijers-Heijboer, H., van den Ouweland, A., Klijn, J., Wasielewski, M., de Snoo, A., Oldenburg, R., Hollestelle, A., Houben, M., Crepin, E., van Veghel-Plandsoen, M., Elstrodt, F., van Duijn, C., Bartels, C., Meijers, C., Schutte, M., McGuffog, L., Thompson, D., Easton, D., Sodha, N., Seal, S., Barfoot, R., Mangion, J., Chang-Claude, J., Eccles, D., Eeles, R., Evans, D.G., Houlston, R., Murday, V., Narod, S., Peretz, T., Peto, J., Phelan, C., Zhang, H.X., Szabo, C., Devilee, P., Goldgar, D., Futreal, P.A., Nathanson, K.L., Weber, B., Rahman, N., Stratton, M.R. Nat. Genet. (2002) [Pubmed]
  3. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Meetei, A.R., Medhurst, A.L., Ling, C., Xue, Y., Singh, T.R., Bier, P., Steltenpool, J., Stone, S., Dokal, I., Mathew, C.G., Hoatlin, M., Joenje, H., de Winter, J.P., Wang, W. Nat. Genet. (2005) [Pubmed]
  4. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. Siaud, N., Dray, E., Gy, I., Gérard, E., Takvorian, N., Doutriaux, M.P. EMBO J. (2004) [Pubmed]
  5. Loss of heterozygosity at the BRCA2 locus detected by multiplex ligation-dependent probe amplification is common in prostate cancers from men with a germline BRCA2 mutation. Willems, A.J., Dawson, S.J., Samaratunga, H., De Luca, A., Antill, Y.C., Hopper, J.L., Thorne, H.J. Clin. Cancer Res. (2008) [Pubmed]
  6. Clinical management of women with genomic BRCA1 and BRCA2 mutations. Chang, J., Elledge, R.M. Breast Cancer Res. Treat. (2001) [Pubmed]
  7. BRCA1 and BRCA2 gene mutations: decision-making dilemmas concerning testing and management. Fasouliotis, S.J., Schenker, J.G. Obstetrical & gynecological survey. (2000) [Pubmed]
  8. The DNA sequence and analysis of human chromosome 13. Dunham, A., Matthews, L.H., Burton, J., Ashurst, J.L., Howe, K.L., Ashcroft, K.J., Beare, D.M., Burford, D.C., Hunt, S.E., Griffiths-Jones, S., Jones, M.C., Keenan, S.J., Oliver, K., Scott, C.E., Ainscough, R., Almeida, J.P., Ambrose, K.D., Andrews, D.T., Ashwell, R.I., Babbage, A.K., Bagguley, C.L., Bailey, J., Bannerjee, R., Barlow, K.F., Bates, K., Beasley, H., Bird, C.P., Bray-Allen, S., Brown, A.J., Brown, J.Y., Burrill, W., Carder, C., Carter, N.P., Chapman, J.C., Clamp, M.E., Clark, S.Y., Clarke, G., Clee, C.M., Clegg, S.C., Cobley, V., Collins, J.E., Corby, N., Coville, G.J., Deloukas, P., Dhami, P., Dunham, I., Dunn, M., Earthrowl, M.E., Ellington, A.G., Faulkner, L., Frankish, A.G., Frankland, J., French, L., Garner, P., Garnett, J., Gilbert, J.G., Gilson, C.J., Ghori, J., Grafham, D.V., Gribble, S.M., Griffiths, C., Hall, R.E., Hammond, S., Harley, J.L., Hart, E.A., Heath, P.D., Howden, P.J., Huckle, E.J., Hunt, P.J., Hunt, A.R., Johnson, C., Johnson, D., Kay, M., Kimberley, A.M., King, A., Laird, G.K., Langford, C.J., Lawlor, S., Leongamornlert, D.A., Lloyd, D.M., Lloyd, C., Loveland, J.E., Lovell, J., Martin, S., Mashreghi-Mohammadi, M., McLaren, S.J., McMurray, A., Milne, S., Moore, M.J., Nickerson, T., Palmer, S.A., Pearce, A.V., Peck, A.I., Pelan, S., Phillimore, B., Porter, K.M., Rice, C.M., Searle, S., Sehra, H.K., Shownkeen, R., Skuce, C.D., Smith, M., Steward, C.A., Sycamore, N., Tester, J., Thomas, D.W., Tracey, A., Tromans, A., Tubby, B., Wall, M., Wallis, J.M., West, A.P., Whitehead, S.L., Willey, D.L., Wilming, L., Wray, P.W., Wright, M.W., Young, L., Coulson, A., Durbin, R., Hubbard, T., Sulston, J.E., Beck, S., Bentley, D.R., Rogers, J., Ross, M.T. Nature (2004) [Pubmed]
  9. No increased risk of breast cancer associated with alcohol consumption among carriers of BRCA1 and BRCA2 mutations ages <50 years. McGuire, V., John, E.M., Felberg, A., Haile, R.W., Boyd, N.F., Thomas, D.C., Jenkins, M.A., Milne, R.L., Daly, M.B., Ward, J., Terry, M.B., Andrulis, I.L., Knight, J.A., Godwin, A.K., Giles, G.G., Southey, M., West, D.W., Hopper, J.L., Whittemore, A.S. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
  10. Psychological impact of genetic testing in women from high-risk breast cancer families. Meiser, B., Butow, P., Friedlander, M., Barratt, A., Schnieden, V., Watson, M., Brown, J., Tucker, K. Eur. J. Cancer (2002) [Pubmed]
  11. Epithelial ovarian cancer: prevention, diagnosis, and treatment. Partridge, E.E., Barnes, M.N. CA: a cancer journal for clinicians. (1999) [Pubmed]
  12. Fanconi anemia and breast cancer susceptibility. Patel, K.J. Nat. Genet. (2007) [Pubmed]
  13. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Reid, S., Schindler, D., Hanenberg, H., Barker, K., Hanks, S., Kalb, R., Neveling, K., Kelly, P., Seal, S., Freund, M., Wurm, M., Batish, S.D., Lach, F.P., Yetgin, S., Neitzel, H., Ariffin, H., Tischkowitz, M., Mathew, C.G., Auerbach, A.D., Rahman, N. Nat. Genet. (2007) [Pubmed]
  14. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Xia, B., Dorsman, J.C., Ameziane, N., de Vries, Y., Rooimans, M.A., Sheng, Q., Pals, G., Errami, A., Gluckman, E., Llera, J., Wang, W., Livingston, D.M., Joenje, H., de Winter, J.P. Nat. Genet. (2007) [Pubmed]
  15. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Seal, S., Thompson, D., Renwick, A., Elliott, A., Kelly, P., Barfoot, R., Chagtai, T., Jayatilake, H., Ahmed, M., Spanova, K., North, B., McGuffog, L., Evans, D.G., Eccles, D., Easton, D.F., Stratton, M.R., Rahman, N. Nat. Genet. (2006) [Pubmed]
  16. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Shin, S., Verma, I.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  17. Breast cancer risk in BRCA1 and BRCA2 mutation carriers and polyglutamine repeat length in the AIB1 gene. Hughes, D.J., Ginolhac, S.M., Coupier, I., Barjhoux, L., Gaborieau, V., Bressac-de-Paillerets, B., Chompret, A., Bignon, Y.J., Uhrhammer, N., Lasset, C., Giraud, S., Sobol, H., Hardouin, A., Berthet, P., Peyrat, J.P., Fournier, J., Nogues, C., Lidereau, R., Muller, D., Fricker, J.P., Longy, M., Toulas, C., Guimbaud, R., Yannoukakos, D., Mazoyer, S., Lynch, H.T., Lenoir, G.M., Goldgar, D.E., Stoppa-Lyonnet, D., Sinilnikova, O.M. Int. J. Cancer (2005) [Pubmed]
  18. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Fan, S., Meng, Q., Auborn, K., Carter, T., Rosen, E.M. Br. J. Cancer (2006) [Pubmed]
  19. Life expectancy gains from cancer prevention strategies for women with breast cancer and BRCA1 or BRCA2 mutations. Schrag, D., Kuntz, K.M., Garber, J.E., Weeks, J.C. JAMA (2000) [Pubmed]
  20. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Chen, P.L., Chen, C.F., Chen, Y., Xiao, J., Sharp, Z.D., Lee, W.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. Mutation analysis in the BRCA2 gene in primary breast cancers. Miki, Y., Katagiri, T., Kasumi, F., Yoshimoto, T., Nakamura, Y. Nat. Genet. (1996) [Pubmed]
  22. A novel ubiquitin ligase is deficient in Fanconi anemia. Meetei, A.R., de Winter, J.P., Medhurst, A.L., Wallisch, M., Waisfisz, Q., van de Vrugt, H.J., Oostra, A.B., Yan, Z., Ling, C., Bishop, C.E., Hoatlin, M.E., Joenje, H., Wang, W. Nat. Genet. (2003) [Pubmed]
  23. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Dong, Y., Hakimi, M.A., Chen, X., Kumaraswamy, E., Cooch, N.S., Godwin, A.K., Shiekhattar, R. Mol. Cell (2003) [Pubmed]
  24. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Chen, J., Silver, D.P., Walpita, D., Cantor, S.B., Gazdar, A.F., Tomlinson, G., Couch, F.J., Weber, B.L., Ashley, T., Livingston, D.M., Scully, R. Mol. Cell (1998) [Pubmed]
  25. The BRCA2 gene product functionally interacts with p53 and RAD51. Marmorstein, L.Y., Ouchi, T., Aaronson, S.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  26. Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Vance, K.W., Carreira, S., Brosch, G., Goding, C.R. Cancer Res. (2005) [Pubmed]
  27. Incidence of BRCA1 and BRCA2 mutations in young Korean breast cancer patients. Choi, D.H., Lee, M.H., Bale, A.E., Carter, D., Haffty, B.G. J. Clin. Oncol. (2004) [Pubmed]
  28. BRCA2 mutations and androgen receptor expression as independent predictors of outcome of male breast cancer patients. Kwiatkowska, E., Teresiak, M., Filas, V., Karczewska, A., Breborowicz, D., Mackiewicz, A. Clin. Cancer Res. (2003) [Pubmed]
  29. Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Mote, P.A., Leary, J.A., Avery, K.A., Sandelin, K., Chenevix-Trench, G., Kirk, J.A., Clarke, C.L. Genes Chromosomes Cancer (2004) [Pubmed]
  30. Androgen pathway dysregulation in BRCA1-mutated breast tumors. Berns, E.M., Dirkzwager-Kiel, M.J., Kuenen-Boumeester, V., Timmermans, M., Verhoog, L.C., van den Ouweland, A.M., Meijer-Heijboer, H., Klijn, J.G., van der Kwast, T.H. Breast Cancer Res. Treat. (2003) [Pubmed]
  31. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Godthelp, B.C., van Buul, P.P., Jaspers, N.G., Elghalbzouri-Maghrani, E., van Duijn-Goedhart, A., Arwert, F., Joenje, H., Zdzienicka, M.Z. Mutat. Res. (2006) [Pubmed]
  32. Novel germline mutations in breast cancer susceptibility genes BRCA1, BRCA2 and p53 gene in breast cancer patients from India. Hedau, S., Jain, N., Husain, S.A., Mandal, A.K., Ray, G., Shahid, M., Kant, R., Gupta, V., Shukla, N.K., Deo, S.S., Das, B.C. Breast Cancer Res. Treat. (2004) [Pubmed]
  33. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. Shin, D.S., Pellegrini, L., Daniels, D.S., Yelent, B., Craig, L., Bates, D., Yu, D.S., Shivji, M.K., Hitomi, C., Arvai, A.S., Volkmann, N., Tsuruta, H., Blundell, T.L., Venkitaraman, A.R., Tainer, J.A. EMBO J. (2003) [Pubmed]
  34. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hussain, S., Witt, E., Huber, P.A., Medhurst, A.L., Ashworth, A., Mathew, C.G. Hum. Mol. Genet. (2003) [Pubmed]
  35. Oncogenic pathways in hereditary and sporadic breast cancer. Kenemans, P., Verstraeten, R.A., Verheijen, R.H. Maturitas. (2004) [Pubmed]
  36. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Schoenfeld, A.R., Apgar, S., Dolios, G., Wang, R., Aaronson, S.A. Mol. Cell. Biol. (2004) [Pubmed]
  37. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Thorslund, T., McIlwraith, M.J., Compton, S.A., Lekomtsev, S., Petronczki, M., Griffith, J.D., West, S.C. Nat. Struct. Mol. Biol. (2010) [Pubmed]
  38. Potential role of BRCA2 in a mitotic checkpoint after phosphorylation by hBUBR1. Futamura, M., Arakawa, H., Matsuda, K., Katagiri, T., Saji, S., Miki, Y., Nakamura, Y. Cancer Res. (2000) [Pubmed]
  39. The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair. Lu, H., Guo, X., Meng, X., Liu, J., Allen, C., Wray, J., Nickoloff, J.A., Shen, Z. Mol. Cell. Biol. (2005) [Pubmed]
  40. Inactivation of BRCA1 and BRCA2 in ovarian cancer. Hilton, J.L., Geisler, J.P., Rathe, J.A., Hattermann-Zogg, M.A., DeYoung, B., Buller, R.E. J. Natl. Cancer Inst. (2002) [Pubmed]
  41. BRCA2 and Smad3 synergize in regulation of gene transcription. Preobrazhenska, O., Yakymovych, M., Kanamoto, T., Yakymovych, I., Stoika, R., Heldin, C.H., Souchelnytskyi, S. Oncogene (2002) [Pubmed]
  42. BRCA2-dependent and independent formation of RAD51 nuclear foci. Tarsounas, M., Davies, D., West, S.C. Oncogene (2003) [Pubmed]
  43. p53 mediates repression of the BRCA2 promoter and down-regulation of BRCA2 mRNA and protein levels in response to DNA damage. Wu, K., Jiang, S.W., Couch, F.J. J. Biol. Chem. (2003) [Pubmed]
  44. Poly(ADP-ribose) polymerase-1 down-regulates BRCA2 expression through the BRCA2 promoter. Wang, J., Bian, C., Li, J., Couch, F.J., Wu, K., Zhao, R.C. J. Biol. Chem. (2008) [Pubmed]
  45. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Yamamoto, K., Ishiai, M., Matsushita, N., Arakawa, H., Lamerdin, J.E., Buerstedde, J.M., Tanimoto, M., Harada, M., Thompson, L.H., Takata, M. Mol. Cell. Biol. (2003) [Pubmed]
  46. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrió, D., Barroso, A., Rodríguez, S., Cigudosa, J.C., Diez, O., Alonso, C., Lerma, E., Sánchez, L., Rivas, C., Benítez, J. Clin. Cancer Res. (2003) [Pubmed]
  47. Evidence of haplotype insufficiency in human cells containing a germline mutation in BRCA1 or BRCA2. Buchholz, T.A., Wu, X., Hussain, A., Tucker, S.L., Mills, G.B., Haffty, B., Bergh, S., Story, M., Geara, F.B., Brock, W.A. Int. J. Cancer (2002) [Pubmed]
  48. Breast cancer after mantle irradiation for Hodgkin's disease: correlation of clinical, pathologic, and molecular features including loss of heterozygosity at BRCA1 and BRCA2. Gaffney, D.K., Hemmersmeier, J., Holden, J., Marshall, J., Smith, L.M., Avizonis, V., Tran, T., Neuhausen, S.L. Int. J. Radiat. Oncol. Biol. Phys. (2001) [Pubmed]
  49. Age-dependent morphological alterations of human ovaries from populations with and without BRCA mutations. Qi Cai, K., Klein-Szanto, A., Karthik, D., Edelson, M., Daly, M.B., Ozols, R.F., Lynch, H.T., Godwin, A.K., Xu, X.X. Gynecol. Oncol. (2006) [Pubmed]
 
WikiGenes - Universities