The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PECAM1  -  platelet/endothelial cell adhesion molecule 1

Homo sapiens

Synonyms: CD31, CD31/EndoCAM, EndoCAM, GPIIA', PECA1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PECAM1


High impact information on PECAM1


Chemical compound and disease context of PECAM1


Biological context of PECAM1


Anatomical context of PECAM1


Associations of PECAM1 with chemical compounds

  • Even if the studies performed are few, it was found an association between young AMI and polymorphism C-260T in the CD14 gene, between coronarics atherosclerosis and polymorphism A516C in the E Selectin gene or polymorphisms Leu125Val and Ser563Asn in the PECAM1 gene [18].
  • Transfected COS-7, mouse 3T3 and L cells expressed a 130-120-kD glycoprotein on their cell surface that reacted with anti-PECAM-1 polyclonal and monoclonal antibodies [19].
  • CD31 stimulation of HUVECs increased the adhesive function of alphavbeta3 integrin to its ligand RGD peptide, the binding of which reached a maximum at 10 minutes after the stimulation, and the CD31-induced alphavbeta3 integrin activation on HUVECs was inhibited by inhibitors of protein kinase C and phosphatidylinositol 3 kinase (PI3-kinase) [14].
  • In immune precipitate phosphatase assays, there was tyrosine dephosphorylation of PECAM-1 [20].
  • Glycogen synthase kinase 3 (GSK-3beta) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress [21].

Physical interactions of PECAM1

  • PECAM-1 was coimmunoprecipitated by anti-SH-PTP2 from EC extracts as a major binding protein, and the level of association increased when PECAM-1 was tyrosine phosphorylated [22].
  • Our data show that moesin co-immunoprecipitated with PECAM-1 in lysates from thrombin-stimulated, but not resting platelets [23].
  • In conclusion, PECAM-1/CD31 appears to be one of the molecules functionally coupled to PI3K, suggesting that this enzyme may represent a common pathway of integrin and adhesiveness regulation in leukocytes [24].
  • Peptido-precipitation analysis revealed that tyrosine-phosphorylated peptides encompassing residues 658-668 and 681-691 of PECAM-1 bound specifically to both protein-tyrosine phosphatases SHP-1 and SHP-2 [25].
  • We show that CD38+ B-CLL cells bind to murine fibroblasts transfected with the CD31 ligand [26].

Enzymatic interactions of PECAM1


Co-localisations of PECAM1


Regulatory relationships of PECAM1

  • Furthermore, anti-alphavbeta3 integrin MoAb and RGD peptide as well as soluble CD31 inhibited endothelial CD31-induced enhancement of eosinophil adhesion to IL-4-stimulated HUVECs [14].
  • Confocal microscopy demonstrated that adult glomeruli display nestin immunoreactivity in vimentin-expressing cells with the podocyte morphology and not in cells bearing the endothelial marker CD31 [31].
  • Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors [32].
  • In normal controls, PECAM was intensely expressed and VCAM-1 was weakly expressed [33].
  • This was tested by assessing the role(s) of CD38 after signaling with agonistic anti-CD38 monoclonal antibodies or by blocking the interactions taking place between CD38 and CD31, its counterreceptor [34].

Other interactions of PECAM1

  • CD9 and PECAM-1 were found lining the membrane of the same granules that contained fibrinogen and vWF in their matrix [13].
  • Platelet alpha-granule and plasma membrane share two new components: CD9 and PECAM-1 [13].
  • PECAM-1/CD31, another cell-cell junctional adhesive molecule, was tyrosine phosphorylated with similar kinetics in response to VEGF [35].
  • Immunostaining showed that the vascular structures expressed CD31, CD34, and CD105 (endoglin), which were not expressed by stromal fibroblastic cells [36].
  • A rapid translocation of SH-PTP2 into cell-cell adhesion sites, where PECAM-1 was localized, occurred in mechanically stimulated cells [22].

Analytical, diagnostic and therapeutic context of PECAM1


  1. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease. Ruco, L.P., Pomponi, D., Pigott, R., Gearing, A.J., Baiocchini, A., Baroni, C.D. Am. J. Pathol. (1992) [Pubmed]
  2. Functional implication of the hydrolysis of platelet endothelial cell adhesion molecule 1 (CD31) by gingipains of Porphyromonas gingivalis for the pathology of periodontal disease. Yun, P.L., Decarlo, A.A., Chapple, C.C., Hunter, N. Infect. Immun. (2005) [Pubmed]
  3. Expression of von Willebrand's factor, CD34, CD31, and vascular endothelial growth factor in uterine leiomyomas. Poncelet, C., Madelenat, P., Feldmann, G., Walker, F., Darai, E. Fertil. Steril. (2002) [Pubmed]
  4. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Kim, L.S., Huang, S., Lu, W., Lev, D.C., Price, J.E. Clin. Exp. Metastasis (2004) [Pubmed]
  5. Assessment of angiogenic markers in oral hemangiomas and pyogenic granulomas. Freitas, T.M., Miguel, M.C., Silveira, E.J., Freitas, R.A., Galvão, H.C. Exp. Mol. Pathol. (2005) [Pubmed]
  6. Polymorphism of adhesion molecule CD31 and its role in acute graft-versus-host disease. Behar, E., Chao, N.J., Hiraki, D.D., Krishnaswamy, S., Brown, B.W., Zehnder, J.L., Grumet, F.C. N. Engl. J. Med. (1996) [Pubmed]
  7. The unfolding tale of PECAM-1. Jackson, D.E. FEBS Lett. (2003) [Pubmed]
  8. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Hendrix, M.J., Seftor, E.A., Meltzer, P.S., Gardner, L.M., Hess, A.R., Kirschmann, D.A., Schatteman, G.C., Seftor, R.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Tseng, S.H., Lin, S.M., Chen, J.C., Su, Y.H., Huang, H.Y., Chen, C.K., Lin, P.Y., Chen, Y. Clin. Cancer Res. (2004) [Pubmed]
  10. Chemotactic properties of ICAM-1 and PECAM-1 on neutrophil granulocytes in ulcerative colitis: effects of prednisolone and mesalazine. Vainer, B., Nielsen, O.H. Aliment. Pharmacol. Ther. (2000) [Pubmed]
  11. Lymphangioma of large intestine: report of ten cases with endoscopic and pathologic correlation. Kim, K.M., Choi, K.Y., Lee, A., Kim, B.K. Gastrointest. Endosc. (2000) [Pubmed]
  12. The human PECAM1 gene maps to 17q23. Gumina, R.J., Kirschbaum, N.E., Rao, P.N., vanTuinen, P., Newman, P.J. Genomics (1996) [Pubmed]
  13. Platelet alpha-granule and plasma membrane share two new components: CD9 and PECAM-1. Cramer, E.M., Berger, G., Berndt, M.C. Blood (1994) [Pubmed]
  14. Ligation of CD31 (PECAM-1) on endothelial cells increases adhesive function of alphavbeta3 integrin and enhances beta1 integrin-mediated adhesion of eosinophils to endothelial cells. Chiba, R., Nakagawa, N., Kurasawa, K., Tanaka, Y., Saito, Y., Iwamoto, I. Blood (1999) [Pubmed]
  15. Regional effects of an antivascular endothelial growth factor receptor monoclonal antibody on receptor phosphorylation and apoptosis in human 253J B-V bladder cancer xenografts. Davis, D.W., Inoue, K., Dinney, C.P., Hicklin, D.J., Abbruzzese, J.L., McConkey, D.J. Cancer Res. (2004) [Pubmed]
  16. Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31). Litwin, M., Clark, K., Noack, L., Furze, J., Berndt, M., Albelda, S., Vadas, M., Gamble, J. J. Cell Biol. (1997) [Pubmed]
  17. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Wizigmann-Voos, S., Breier, G., Risau, W., Plate, K.H. Cancer Res. (1995) [Pubmed]
  18. Genetic risk factors in myocardial infarction at young age. Incalcaterra, E., Hoffmann, E., Averna, M.R., Caimi, G. Minerva cardioangiologica. (2004) [Pubmed]
  19. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. Albelda, S.M., Muller, W.A., Buck, C.A., Newman, P.J. J. Cell Biol. (1991) [Pubmed]
  20. The protein-tyrosine phosphatase SHP-2 associates with tyrosine-phosphorylated adhesion molecule PECAM-1 (CD31). Sagawa, K., Kimura, T., Swieter, M., Siraganian, R.P. J. Biol. Chem. (1997) [Pubmed]
  21. PECAM-1 affects GSK-3beta-mediated beta-catenin phosphorylation and degradation. Biswas, P., Canosa, S., Schoenfeld, D., Schoenfeld, J., Li, P., Cheas, L.C., Zhang, J., Cordova, A., Sumpio, B., Madri, J.A. Am. J. Pathol. (2006) [Pubmed]
  22. Platelet endothelial cell adhesion molecule-1 is a major SH-PTP2 binding protein in vascular endothelial cells. Masuda, M., Osawa, M., Shigematsu, H., Harada, N., Fujiwara, K. FEBS Lett. (1997) [Pubmed]
  23. Platelet moesin interacts with PECAM-1 (CD31). Gamulescu, M.A., Seifert, K., Tingart, M., Falet, H., Hoffmeister, K.M. Platelets (2003) [Pubmed]
  24. Functional association of platelet endothelial cell adhesion molecule-1 and phosphoinositide 3-kinase in human neutrophils. Pellegatta, F., Chierchia, S.L., Zocchi, M.R. J. Biol. Chem. (1998) [Pubmed]
  25. Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates. Hua, C.T., Gamble, J.R., Vadas, M.A., Jackson, D.E. J. Biol. Chem. (1998) [Pubmed]
  26. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Deaglio, S., Vaisitti, T., Bergui, L., Bonello, L., Horenstein, A.L., Tamagnone, L., Boumsell, L., Malavasi, F. Blood (2005) [Pubmed]
  27. PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated beta-catenin. Ilan, N., Mahooti, S., Rimm, D.L., Madri, J.A. J. Cell. Sci. (1999) [Pubmed]
  28. Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. Bird, I.N., Taylor, V., Newton, J.P., Spragg, J.H., Simmons, D.L., Salmon, M., Buckley, C.D. J. Cell. Sci. (1999) [Pubmed]
  29. Platelet endothelial cell adhesion molecule-1 is phosphorylatable by c-Src, binds Src-Src homology 2 domain, and exhibits immunoreceptor tyrosine-based activation motif-like properties. Lu, T.T., Barreuther, M., Davis, S., Madri, J.A. J. Biol. Chem. (1997) [Pubmed]
  30. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. Fujiwara, K. J. Intern. Med. (2006) [Pubmed]
  31. Nestin expression in adult and developing human kidney. Bertelli, E., Regoli, M., Fonzi, L., Occhini, R., Mannucci, S., Ermini, L., Toti, P. J. Histochem. Cytochem. (2007) [Pubmed]
  32. Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells. Rajesh, M., Kolmakova, A., Chatterjee, S. Circ. Res. (2005) [Pubmed]
  33. Vascular adhesion molecules in oral lichen planus. Regezi, J.A., Dekker, N.P., MacPhail, L.A., Lozada-Nur, F., McCalmont, T.H. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. (1996) [Pubmed]
  34. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Frasca, L., Fedele, G., Deaglio, S., Capuano, C., Palazzo, R., Vaisitti, T., Malavasi, F., Ausiello, C.M. Blood (2006) [Pubmed]
  35. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. Esser, S., Lampugnani, M.G., Corada, M., Dejana, E., Risau, W. J. Cell. Sci. (1998) [Pubmed]
  36. Vascular networks within the stroma of human long-term bone marrow cultures. Wilkins, B.S., Jones, D.B. J. Pathol. (1995) [Pubmed]
  37. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Bhatt, A.J., Pryhuber, G.S., Huyck, H., Watkins, R.H., Metlay, L.A., Maniscalco, W.M. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
WikiGenes - Universities