The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Teratoma


High impact information on Teratoma

  • Expression profiling of wildtype and Apc-mutated teratomas supports the differentiation defects at the molecular level and pinpoints a large number of downstream structural and regulating genes [6].
  • A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18 [7].
  • The c-mos-deficient female mice developed ovarian teratomas at a high frequency [8].
  • P19 teratoma cells differentiate to nerve-like cells in the presence of 5 x 10(-7) M retinoic acid (RA) [9].
  • Sacrococcygeal teratoma in a neonate. Association with maternal use of acetazolamide [10].

Chemical compound and disease context of Teratoma


Biological context of Teratoma


Anatomical context of Teratoma


Gene context of Teratoma


Analytical, diagnostic and therapeutic context of Teratoma


  1. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Lynch, S.A., Bond, P.M., Copp, A.J., Kirwan, W.O., Nour, S., Balling, R., Mariman, E., Burn, J., Strachan, T. Nat. Genet. (1995) [Pubmed]
  2. Ectopic hyperprolactinemia resulting from an ovarian teratoma. Kallenberg, G.A., Pesce, C.M., Norman, B., Ratner, R.E., Silvergerg, S.G. JAMA (1990) [Pubmed]
  3. Increased "pregnancy-specific" beta1-glycoprotein in certain nonseminomatous germ cell tumors. Rosen, S.W., Javadpour, N., Calvert, I., Kaminska, J. J. Natl. Cancer Inst. (1979) [Pubmed]
  4. 53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis. Morales, J.C., Franco, S., Murphy, M.M., Bassing, C.H., Mills, K.D., Adams, M.M., Walsh, N.C., Manis, J.P., Rassidakis, G.Z., Alt, F.W., Carpenter, P.B. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. Molecular properties of F9 embryoglycan recognized by a unique antibody in sera from patients with germ cell tumors. Kawata, M., Sekiya, S., Takamizawa, H., Muramatsu, T., Okumura, K. Cancer Res. (1987) [Pubmed]
  6. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Kielman, M.F., Rindapää, M., Gaspar, C., van Poppel, N., Breukel, C., van Leeuwen, S., Taketo, M.M., Roberts, S., Smits, R., Fodde, R. Nat. Genet. (2002) [Pubmed]
  7. A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18. Asada, Y., Varnum, D.S., Frankel, W.N., Nadeau, J.H. Nat. Genet. (1994) [Pubmed]
  8. Parthenogenetic activation of oocytes in c-mos-deficient mice. Hashimoto, N., Watanabe, N., Furuta, Y., Tamemoto, H., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y. Nature (1994) [Pubmed]
  9. Activin is a nerve cell survival molecule. Schubert, D., Kimura, H., LaCorbiere, M., Vaughan, J., Karr, D., Fischer, W.H. Nature (1990) [Pubmed]
  10. Sacrococcygeal teratoma in a neonate. Association with maternal use of acetazolamide. Worsham, F., Beckman, E.N., Mitchell, E.H. JAMA (1978) [Pubmed]
  11. Biochemical characterization of endogenous carbohydrate-binding proteins from spontaneous murine rhabdomyosarcoma, mammary adenocarcinoma, and ovarian teratoma. Gabius, H.J., Engelhardt, R., Rehm, S., Cramer, F. J. Natl. Cancer Inst. (1984) [Pubmed]
  12. Essential role of NAT1/p97/DAP5 in embryonic differentiation and the retinoic acid pathway. Yamanaka, S., Zhang, X.Y., Maeda, M., Miura, K., Wang, S., Farese, R.V., Iwao, H., Innerarity, T.L. EMBO J. (2000) [Pubmed]
  13. Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Zhang, H., Serrero, G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  14. In vitro differentiation of teratomas and the distribution of creatine phosphokinase and plasminogen activator in teratocarcinoma-derived cells. Topp, W., Hall, J.D., Marsden, M., Teresky, A.K., Rifkin, D., Levine, A.J., Pollack, R. Cancer Res. (1976) [Pubmed]
  15. Endodermal origin of yolk-sac-derived teratomas. Sobis, H., Verstuyf, A., Vandeputte, M. Development (1991) [Pubmed]
  16. Telomerase activity in germ cell cancers and mature teratomas. Albanell, J., Bosl, G.J., Reuter, V.E., Engelhardt, M., Franco, S., Moore, M.A., Dmitrovsky, E. J. Natl. Cancer Inst. (1999) [Pubmed]
  17. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Cai, Q., Chandler, J.S., Wasserman, R.H., Kumar, R., Penniston, J.T. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. Methylation imprinting of H19 and SNRPN genes in human benign ovarian teratomas. Miura, K., Obama, M., Yun, K., Masuzaki, H., Ikeda, Y., Yoshimura, S., Akashi, T., Niikawa, N., Ishimaru, T., Jinno, Y. Am. J. Hum. Genet. (1999) [Pubmed]
  19. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Juric, D., Sale, S., Hromas, R.A., Yu, R., Wang, Y., Duran, G.E., Tibshirani, R., Einhorn, L.H., Sikic, B.I. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  20. Alkaline phosphatase of mouse teratoma stem cells: immunochemical and structural evidence for its identity as a somatic gene product. Hass, P.E., Wada, H.G., Herman, M.M., Sussman, H.H. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  21. Prognostic factors in clinical stage I nonseminomatous germ cell tumors of the testis: multivariate analysis of a prospective multicenter study. Swedish-Norwegian Testicular Cancer Group. Klepp, O., Olsson, A.M., Henrikson, H., Aass, N., Dahl, O., Stenwig, A.E., Persson, B.E., Cavallin-Ståhl, E., Fosså, S.D., Wahlqvist, L. J. Clin. Oncol. (1990) [Pubmed]
  22. Transcription factor GATA-4 is expressed in pediatric yolk sac tumors. Siltanen, S., Anttonen, M., Heikkilä, P., Narita, N., Laitinen, M., Ritvos, O., Wilson, D.B., Heikinheimo, M. Am. J. Pathol. (1999) [Pubmed]
  23. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., Li, E. Mol. Cell. Biol. (2003) [Pubmed]
  24. Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Di Vizio, D., Cito, L., Boccia, A., Chieffi, P., Insabato, L., Pettinato, G., Motti, M.L., Schepis, F., D'Amico, W., Fabiani, F., Tavernise, B., Venuta, S., Fusco, A., Viglietto, G. Oncogene (2005) [Pubmed]
  25. Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. Kii, I., Amizuka, N., Shimomura, J., Saga, Y., Kudo, A. J. Bone Miner. Res. (2004) [Pubmed]
  26. Immature teratomas: identification of patients at risk for malignant recurrence. Malogolowkin, M.H., Ortega, J.A., Krailo, M., Gonzalez, O., Mahour, G.H., Landing, B.H., Siegel, S.E. J. Natl. Cancer Inst. (1989) [Pubmed]
  27. Cytogenetic analysis of murine embryo-derived tumors. van Berlo, R.J., de Jong, B., Oosterhuis, J.W., Dijkhuizen, T., Buist, J., Dam, A. Cancer Res. (1990) [Pubmed]
  28. Deficiency of beta 1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Sasaki, T., Forsberg, E., Bloch, W., Addicks, K., Fässler, R., Timpl, R. Exp. Cell Res. (1998) [Pubmed]
  29. Cell cycle regulators in testicular cancer: loss of p18INK4C marks progression from carcinoma in situ to invasive germ cell tumours. Bartkova, J., Thullberg, M., Rajpert-De Meyts, E., Skakkebaek, N.E., Bartek, J. Int. J. Cancer (2000) [Pubmed]
WikiGenes - Universities