The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Purkinje Fibers

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Purkinje Fibers

 

Psychiatry related information on Purkinje Fibers

 

High impact information on Purkinje Fibers

  • Purkinje fibers share common lineage with cardiomyocytes not neural cells [7]
  • Two independent markers reveal defects in the formation of ventricular Purkinje fibers [8].
  • Surprisingly, the cellular expression of connexin40, the major gap junction isoform of Purkinje fibers and a putative Nkx2-5 target, is unaffected, consistent with normal conduction times through the His-Purkinje system measured in vivo [9].
  • The dynamic response of squared conduction velocity, theta 2, to repetitive stimulation in canine Purkinje fibers with quinidine was studied using a double-microelectrode technique [10].
  • Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers [11].
  • Beta-adrenergic augmentation of flecainide-induced conduction slowing in canine Purkinje fibers [12].
 

Chemical compound and disease context of Purkinje Fibers

 

Biological context of Purkinje Fibers

 

Anatomical context of Purkinje Fibers

 

Associations of Purkinje Fibers with chemical compounds

  • Characterization of concentration- and use-dependent effects of quinidine from conduction delay and declining conduction velocity in canine Purkinje fibers [10].
  • Isolated canine Purkinje fibers were superfused with 2 X 10(7)M ouabain until delayed afterdepolarizations occurred and attained an amplitude of 5 mV at a paced cycle length of 500 msec [28].
  • The inotropic effects of strophanthidin in Purkinje fibers and the sodium pump [29].
  • Enhancement by norepinephrine of automaticity in sheep cardiac Purkinje fibers exposed to hypoxic glucose-free Tyrode's solution: a role for alpha-adrenoceptors [30]?
  • In quiescent normal and infarcted preparations, a low concentration of caffeine (0.5 mM) differentially induced DADs in ischemic but not in normal Purkinje fibers, increased the amplitude of existing DADs, and brought subthreshold DADs to threshold potential that caused triggered activity [31].
 

Gene context of Purkinje Fibers

  • Purkinje fibers express characteristic patterns of gap junctional connexins (Cx43, Cx40 and Cx45) [32], [33],[34].
  • Conversely, pressure-overload in the ventricle by conotruncal banding results in a significant expansion of endocardial ECE1 expression and Cx40-positive putative Purkinje fibers [35].
  • Collectively, the results provide the first sing of a possible functional interaction between ANKRD1 and CASQ2 and suggest a potentially novel role for both proteins in cardiac Purkinje fibers [36].
  • Dystrophin was present at the periphery of cardiocytes and cardiac Purkinje fibers as well as in transverse T tubules but was absent or faintly expressed in intercalated disks [24].
  • CONCLUSIONS: This first localization of utrophin in normal heart (in Purkinje fibers, transverse tubules, and intercalated disks) showed a distinct subcellular localization of this protein with dystrophin, suggesting an important function of this protein in intercellular communication [24].
  • The nodal tissues never exhibited immunoreactions for ANP or BNP, whereas Purkinje fibers of the atrioventricular junctional tissue, bundle branches, and the peripheral Purkinje fiber network exhibited specific immunoreactivity [37].
 

Analytical, diagnostic and therapeutic context of Purkinje Fibers

References

  1. Effects of pacing on triggered activity induced by early afterdepolarizations. Damiano, B.P., Rosen, M.R. Circulation (1984) [Pubmed]
  2. The effects of doxorubicin on ventricular tachycardia. le Marec, H., Spinelli, W., Rosen, M.R. Circulation (1986) [Pubmed]
  3. Specific alpha 1-adrenergic receptor subtypes modulate catecholamine-induced increases and decreases in ventricular automaticity. del Balzo, U., Rosen, M.R., Malfatto, G., Kaplan, L.M., Steinberg, S.F. Circ. Res. (1990) [Pubmed]
  4. Control of ionic permeabilities in normal and ischemic heart. Coraboeuf, E., Deroubaix, E., Hoerter, J. Circ. Res. (1976) [Pubmed]
  5. Effects of acetylcholine on the ventricular specialized conducting system of neonatal and adult dogs. Danilo, P., Rosen, M.R., Hordof, A.J. Circ. Res. (1978) [Pubmed]
  6. Inducing of automatism of Purkinje fibers with dibutyryl 3', 5' cyclic AMP. Kentera, D., Zdravković, M., Varagić, V. Res. Commun. Chem. Pathol. Pharmacol. (1978) [Pubmed]
  7. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Gourdie, R.G., Mima, T., Thompson, R.P., Mikawa, T. Development. (1995) [Pubmed]
  8. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages. Nguyên-Trân, V.T., Kubalak, S.W., Minamisawa, S., Fiset, C., Wollert, K.C., Brown, A.B., Ruiz-Lozano, P., Barrere-Lemaire, S., Kondo, R., Norman, L.W., Gourdie, R.G., Rahme, M.M., Feld, G.K., Clark, R.B., Giles, W.R., Chien, K.R. Cell (2000) [Pubmed]
  9. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. Jay, P.Y., Harris, B.S., Maguire, C.T., Buerger, A., Wakimoto, H., Tanaka, M., Kupershmidt, S., Roden, D.M., Schultheiss, T.M., O'Brien, T.X., Gourdie, R.G., Berul, C.I., Izumo, S. J. Clin. Invest. (2004) [Pubmed]
  10. Characterization of concentration- and use-dependent effects of quinidine from conduction delay and declining conduction velocity in canine Purkinje fibers. Packer, D.L., Grant, A.O., Strauss, H.C., Starmer, C.F. J. Clin. Invest. (1989) [Pubmed]
  11. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. Jorgensen, A.O., Shen, A.C., Arnold, W., McPherson, P.S., Campbell, K.P. J. Cell Biol. (1993) [Pubmed]
  12. Beta-adrenergic augmentation of flecainide-induced conduction slowing in canine Purkinje fibers. Cragun, K.T., Johnson, S.B., Packer, D.L. Circulation (1997) [Pubmed]
  13. Actions of lidocaine on transmembrane potentials of subendocardial Purkinje fibers surviving in infarcted canine hearts. Allen, J.D., Brennan, F.J., Wit, A.L. Circ. Res. (1978) [Pubmed]
  14. Effects of intracoronary potassium chloride on electrograms of canine Purkinje fibers in six-hour- to four-week-old myocardial infarcts. An indication of time-dependent changes in collateral blood flow. Dangman, K.H., Wang, H.H., Wit, A.L. Circ. Res. (1979) [Pubmed]
  15. The effects of acidosis and bicarbonate on action potential repolarization in canine cardiac Purkinje fibers. Spitzer, K.W., Hogan, P.M. J. Gen. Physiol. (1979) [Pubmed]
  16. The effect of metabolic inhibitors on strophanthidin-induced arrhythmias and contracture in cardiac purkinje fibers. Bhattacharyya, M.L., Vassalle, M. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  17. Effects of epinephrine on automaticity and the incidence of arrhythmias in Purkinje fibers surviving myocardial infarction. Cameron, J.S., Han, J. J. Pharmacol. Exp. Ther. (1982) [Pubmed]
  18. Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization. Carlsson, L., Abrahamsson, C., Drews, L., Duker, G. Circulation (1992) [Pubmed]
  19. Molecular characterization of the ventricular conduction system in the developing mouse heart: topographical correlation in normal and congenitally malformed hearts. Franco, D., Icardo, J.M. Cardiovasc. Res. (2001) [Pubmed]
  20. Effects of verapamil on electrophysiologic properties of blood superfused cardiac Purkinje fibers. Danilo, P., Hordof, A.J., Reder, R.F., Rosen, M.R. J. Pharmacol. Exp. Ther. (1980) [Pubmed]
  21. Occurrence of binding sites for [125I] ANP in the myocardium but not in Purkinje fibers of the bovine heart. Hansson, M., Barroso, C., Gulbenkian, S., Forsgren, S. Cell Tissue Res. (1997) [Pubmed]
  22. Frequency- and voltage-dependent effects of disopyramide in canine Purkinje fibers. Flemming, M.A., Sasyniuk, B.I. Can. J. Physiol. Pharmacol. (1989) [Pubmed]
  23. The effects of milrinone on conduction, reflection, and automaticity in canine Purkinje fibers. Davidenko, J.M., Antzelevitch, C. Circulation (1984) [Pubmed]
  24. Utrophin localization in normal and dystrophin-deficient heart. Pons, F., Robert, A., Fabbrizio, E., Hugon, G., Califano, J.C., Fehrentz, J.A., Martinez, J., Mornet, D. Circulation (1994) [Pubmed]
  25. Cardiotonic activity of amrinone--Win 40680 [5-amino-3,4'-bipyridine-6(1H)-one]. Alousi, A.A., Farah, A.E., Lesher, G.Y., Opalka, C.J. Circ. Res. (1979) [Pubmed]
  26. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Pogwizd, S.M., Onufer, J.R., Kramer, J.B., Sobel, B.E., Corr, P.B. Circ. Res. (1986) [Pubmed]
  27. Electrophysiologic effects of a new antiarrhythmic agent, recainam, on isolated canine and rabbit myocardial fibers. Takikawa, R., Kamiya, K., Kato, R., Singh, B.N. J. Am. Coll. Cardiol. (1988) [Pubmed]
  28. Induction and termination of triggered activity by pacing in isolated canine Purkinje fibers. Moak, J.P., Rosen, M.R. Circulation (1984) [Pubmed]
  29. The inotropic effects of strophanthidin in Purkinje fibers and the sodium pump. Bernabei, R., Vassalle, M. Circulation (1984) [Pubmed]
  30. Enhancement by norepinephrine of automaticity in sheep cardiac Purkinje fibers exposed to hypoxic glucose-free Tyrode's solution: a role for alpha-adrenoceptors? Mugelli, A., Amerini, S., Piazzesi, G., Cerbai, E., Giotti, A. Circulation (1986) [Pubmed]
  31. Effects of caffeine and ryanodine on delayed afterdepolarizations and sustained rhythmic activity in 1-day-old myocardial infarction in the dog. Boutjdir, M., el-Sherif, N., Gough, W.B. Circulation (1990) [Pubmed]
  32. Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Gourdie, R.G., Green, C.R., Severs, N.J., Anderson, R.H., Thompson, R.P. Circ. Res. (1993) [Pubmed]
  33. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Kanter, H.L., Laing, J.G., Beau, S.L., Beyer, E.C., Saffitz, J.E. Circ. Res. (1993) [Pubmed]
  34. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Coppen, S.R., Severs, N.J., Gourdie, R.G. Dev. Genet. (1999) [Pubmed]
  35. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Hall, C.E., Hurtado, R., Hewett, K.W., Shulimovich, M., Poma, C.P., Reckova, M., Justus, C., Pennisi, D.J., Tobita, K., Sedmera, D., Gourdie, R.G., Mikawa, T. Development (2004) [Pubmed]
  36. ANKRD1 specifically binds CASQ2 in heart extracts and both proteins are co-enriched in piglet cardiac Purkinje cells. Torrado, M., Nespereira, B., López, E., Centeno, A., Castro-Beiras, A., Mikhailov, A.T. J. Mol. Cell. Cardiol. (2005) [Pubmed]
  37. Natriuretic peptide expression in the heart of the TTR-ANP transgenic mouse-Comparison to the normal heart. Lundberg, S., Hansson, M. Microsc. Res. Tech. (2005) [Pubmed]
  38. Expression and localization of dystrophin in human cardiac Purkinje fibers. Bies, R.D., Friedman, D., Roberts, R., Perryman, M.B., Caskey, C.T. Circulation (1992) [Pubmed]
  39. A dihydropyridine (Bay k 8644) that enhances calcium currents in guinea pig and calf myocardial cells. A new type of positive inotropic agent. Thomas, G., Chung, M., Cohen, C.J. Circ. Res. (1985) [Pubmed]
  40. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Kanter, H.L., Laing, J.G., Beau, S.L., Beyer, E.C., Saffitz, J.E. Circ. Res. (1993) [Pubmed]
  41. Effects of clofilium on ischemic subendocardial Purkinje fibers 1 day postinfarction. Gough, W.B., Hu, D., el-Sherif, N. J. Am. Coll. Cardiol. (1988) [Pubmed]
  42. The effects of lidocaine on the canine ECG and electrophysiologic properties of Purkinje fibers. Rosen, M.R., Merker, C., Pippenger, C.E. Am. Heart J. (1976) [Pubmed]
 
WikiGenes - Universities