The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Gallopamil     5-[2-(3,4- dimethoxyphenyl)ethyl- methyl...

Synonyms: Galopamilo, Prebet, Gallopamillum, CHEMBL51149, SureCN49428, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.



High impact information on GALLOPAMIL HYDROCHLORIDE

  • Rhodaminephalloidin labeling of actin filaments revealed a field-induced disorganization of the stress fiber pattern, which was reduced when stimulation was conducted in calcium-depleted buffer or in buffer containing calcium antagonist CoCl2, calcium channel blocker D-600, or calmodulin antagonist trifluoperazine [6].
  • Binding studies with 3H-labeled D-600 demonstrate the presence of high-affinity receptors for D-600 in sarcolemmal membranes (Kd = 6.4 X 10(-9) M; Bmax = 3 pmol per mg of protein) [7].
  • We report measurements of nonlinear charge movement in frog skeletal muscle fibers paralyzed by the calcium-entry blocker [Schwartz, A. & Taira, N., eds. (1983) Circ. Res. 52, Part II, Number 2, 1-181.] D600 (methoxyverapamil, recently renamed gallopamil) [8].
  • On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium [9].
  • We studied the effects of D-600 on membrane current and tension of cat papillary muscle, using a conventional single sucrose gap voltage clamp technique [9].

Chemical compound and disease context of GALLOPAMIL HYDROCHLORIDE



  • The results indicate that D-600 not only reduces the maximal Ca conductance but also, depending on concentration and duration of exposure, alters both the kinetics of the Ca-carrying system and the amplitude of the steady state outward current [9].
  • Inhibition of Ca2+ influx into beta-cells by D-600, a blocker of voltage-gated L-type Ca2+ channels, suppressed IL-1beta-induced apoptosis [14].
  • D 600, prepared as the free base and dissolved in sesame oil, was injected subcutaneously daily into SHR to maintain the systolic blood pressure (SBP) at less than 130 mm Hg for 24 hours after injections [15].
  • In this double-blind, randomized placebo-controlled study the effects of two dosages of gallopamil on exercise tolerance were evaluated in 12 patients with stable effort angina [16].
  • Echocardiographic evaluation of the effects of gallopamil on left ventricular function [1].


  • BIBP 3226, a specific Y1 antagonist, did not modify the colonic smooth muscle response to PYY, whereas blocking L-type Ca(2+) channels with D-600 abolished its effects [17].
  • In addition, application of SCFAs to isolated ileal myocytes evoked peaks in [Ca2+]i inhibited by D 600 (a blocker of voltage dependent calcium channels) [18].
  • The observed improvement of early relaxation seems to be a potentially beneficial effect of gallopamil in patients with coronary artery disease [2].
  • Portal veins from SHR showed increased spontaneous activity, supernormal responses to NE, and decreased ED50 values for NE that were all exaggerated by chronic D 600 treatment [15].
  • These results imply that SHR developed a tolerance to D 600 associated with enhanced contractility of vascular smooth muscles [15].

Associations of GALLOPAMIL HYDROCHLORIDE with other chemical compounds




Analytical, diagnostic and therapeutic context of GALLOPAMIL HYDROCHLORIDE


  1. Echocardiographic evaluation of the effects of gallopamil on left ventricular function. Fisman, E.Z., Pines, A., Ben-Ari, E., Shiner, R.J., Drory, Y., Friedman, B.A., Kellermann, J.J. Clin. Pharmacol. Ther. (1988) [Pubmed]
  2. Acute effects of gallopamil on left ventricular systolic and diastolic function in patients with ischaemic heart disease. Di Mario, C., Iavernaro, A., Cucchini, F. Eur. Heart J. (1991) [Pubmed]
  3. Preservation of myocardial blood flow by calcium antagonists does not prevent attenuation of regional myocardial function after repetitive brief periods of myocardial ischaemia in the rat heart. Tiefenbacher, C.P., Zimmermann, R., Parekh, N., Amann, K., Tillmanns, H., Rauch, B., Kübler, W. Eur. Heart J. (1995) [Pubmed]
  4. Inhibition of antigen-induced bronchoconstriction by a new calcium antagonist, gallopamil: comparison with cromolyn sodium. Ahmed, T., Kim, C.S., Danta, I. J. Allergy Clin. Immunol. (1988) [Pubmed]
  5. The effect of inhaled gallopamil, a potent calcium channel blocker, on the late-phase response in subjects with allergic asthma. Hoppe, M., Harman, E., Hendeles, L. J. Allergy Clin. Immunol. (1992) [Pubmed]
  6. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. Onuma, E.K., Hui, S.W. J. Cell Biol. (1988) [Pubmed]
  7. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Ehrlich, B.E., Schen, C.R., Garcia, M.L., Kaczorowski, G.J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  8. Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Hui, C.S., Milton, R.L., Eisenberg, R.S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  9. On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium. Nawrath, H., Eick, R.E., McDonald, T.F., Trautwein, W. Circ. Res. (1977) [Pubmed]
  10. Calcium antagonists and myocardial microperfusion. Tillmanns, H., Neumann, F.J., Parekh, N., Waas, W., Möller, P., Zimmermann, R., Steinhausen, M., Köbler, W. Drugs (1991) [Pubmed]
  11. Intrarenal infusion of gallopamil in acute renal failure. A preliminary report. Lumlertgul, D., Wongmekiat, O., Sirivanichai, C., Hundagoon, P., Keoplung, M., Conger, J.D., Schrier, R.W. Drugs (1991) [Pubmed]
  12. Sustained beneficial effects of gallopamil (D600) on size of myocardial infarction 24 hours after coronary artery occlusion in dogs. Endo, T., Kiuchi, K., Sato, N., Hayakawa, H., Maroko, P.R. Am. Heart J. (1990) [Pubmed]
  13. Pharmacodynamic interaction between mibefradil and other calcium channel blockers. Matthes, J., Huber, I., Haaf, O., Antepohl, W., Striessnig, J., Herzig, S. Naunyn Schmiedebergs Arch. Pharmacol. (2000) [Pubmed]
  14. Imidazoline compounds protect against interleukin 1beta-induced beta-cell apoptosis. Zaitsev, S.V., Appelskog, I.B., Kapelioukh, I.L., Yang, S.N., Köhler, M., Efendic, S., Berggren, P.O. Diabetes (2001) [Pubmed]
  15. Effect of chronic treatment of spontaneously hypertensive rats with D 600. Pang, C.C., Sutter, M.C. Hypertension (1981) [Pubmed]
  16. Objective evaluation of gallopamil in patients with chronic stable angina. Exercise testing, Holter monitoring, cross-sectional echocardiography and plasma levels. Scrutinio, D., Lagioia, R., Mangini, S.G., Mastropasqua, F., Ricci, A., Chiddo, A., Rizzon, P. Eur. Heart J. (1989) [Pubmed]
  17. Pathways and receptors involved in peptide YY induced contraction of rat proximal colonic muscle in vitro. Ferrier, L., Segain, J.P., Pacaud, P., Cherbut, C., Loirand, G., Galmiche, J.P., Blottière, H.M. Gut (2000) [Pubmed]
  18. In vitro contractile effects of short chain fatty acids in the rat terminal ileum. Cherbut, C., Aubé, A.C., Blottière, H.M., Pacaud, P., Scarpignato, C., Galmiche, J.P. Gut (1996) [Pubmed]
  19. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. King, V.F., Garcia, M.L., Himmel, D., Reuben, J.P., Lam, Y.K., Pan, J.X., Han, G.Q., Kaczorowski, G.J. J. Biol. Chem. (1988) [Pubmed]
  20. Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine. Caputo, C., Bolaños, P. J. Gen. Physiol. (1987) [Pubmed]
  21. Effect of gallopamil, a calcium channel blocker, on carbachol- and histamine-induced bronchoconstriction in sheep. Carpenter, N., D'Brot, J., Kim, C.S., Abraham, W.M., Ahmed, T. J. Allergy Clin. Immunol. (1988) [Pubmed]
  22. The role of calcium in the control of renin release. Naftilan, A.J., Oparil, S. Hypertension (1982) [Pubmed]
  23. Evidence for the involvement of internal calcium stores during serotonin-induced meiosis reinitation in oocytes of the bivalve mollusc Ruditapes philippinarum. Guerrier, P., Leclerc-David, C., Moreau, M. Dev. Biol. (1993) [Pubmed]
  24. Identification of human cytochrome P-450 isoforms involved in metabolism of R(+)- and S(-)-gallopamil: utility of in vitro disappearance rate. Suzuki, A., Iida, I., Tanaka, F., Akimoto, M., Fukushima, K., Tani, M., Ishizaki, T., Chiba, K. Drug Metab. Dispos. (1999) [Pubmed]
  25. Role of calcium in acute stimulated release of prolactin from neoplastic GH3 cells. Moriarty, C.M., Leuschen, M.P. Am. J. Physiol. (1981) [Pubmed]
  26. Perifusion of rat pituitaries: requirements for optimal GnRH-stimulated LH release. Stern, J.E., Conn, P.M. Am. J. Physiol. (1981) [Pubmed]
  27. Comparative study on the effect of calcium channel blockers on basal and parathyroid hormone-induced bone resorption in vitro. Redlich, K., Pietschmann, P., Stulc, T., Peterlik, M. Pharmacol. Toxicol. (1997) [Pubmed]
  28. Preischaemic as well as postischaemic application of a calcium antagonist affords cardioprotection in the isolated guinea pig heart. Massoudy, P., Becker, B.F., Seligmann, C., Gerlach, E. Cardiovasc. Res. (1995) [Pubmed]
  29. Effect of gallopamil on myocardial ischaemia during percutaneous transluminal coronary angioplasty. Rauch, B., Neumann, J., Richardt, G., Kranzhöfer, R., Barth, R., Zimmermann, R., Koch, H.P., Tillmanns, H., Schömig, A. Drugs (1991) [Pubmed]
  30. The regulation of extrajunctional acetylcholine receptors in the denervated rat diaphragm muscle in culture. Kallo, J.R., Steinhardt, R.A. J. Physiol. (Lond.) (1983) [Pubmed]
WikiGenes - Universities