The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Dicaine     2-dimethylaminoethyl 4-butylaminobenzoate

Synonyms: Anetain, Fissucain, Intercain, Medicaine, Niphanoid, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pontocaine


Psychiatry related information on Pontocaine

  • At high doses, tetracaine also suppressed locomotor activity [6].
  • Influence of duration of lateral decubitus on the spread of hyperbaric tetracaine during spinal anesthesia: a prospective time-response study [7].
  • Fewer antecedent ejaculations had less inhibitory effects on reflexive erection, and TET then acted, as in rested males, to reduce the erection latency and the number of erections, indicating that copulation may act on the brain's descending influences on spinal systems [8].
  • EMLA presented a longer latency period, 4% amethocaine showed the highest percentage of untoward effects, and AMLI exhibited a shorter latency period than EMLA, while having fewer adverse effects than 4% AMET and EMLA [9].
  • Results obtained indicate that the sequence of return of neurological activity following tetracaine subarachnoid block is sympathetic nervous system activity, pinprick sensation, somatic motor function followed by proprioception in the feet [10].

High impact information on Pontocaine


Chemical compound and disease context of Pontocaine


Biological context of Pontocaine

  • These results suggest that tetracaine interferes with those interactions between immune reactants and the polymorphonuclear leukocyte cell surface which provoke exocytosis and increased oxidative metabolism [13].
  • Conversely, 1 mM tetracaine completely inhibited CR3 up-regulation, while significantly enhancing aggregation [19].
  • Tetracaine (25 microM) had similar effects on the charge movement currents, shifting the voltage dependence on the ON charge in parallel with the contraction threshold, but to more positive membrane potentials, and leaving QOFF essentially unchanged [20].
  • Although concentrations of the LA tetracaine consistent with binding to the ion channel pore elicit a reversed pattern of spectral changes suggestive of a resting state-like nAChR, higher concentrations also lead to neurotransmitter site binding and desensitization [21].
  • 25 microM tetracaine had very little effect on the maximum amounts of Q beta and Q gamma but slowed the kinetics of the I gamma humps in the ON segments of TEST-minus-CONTROL current traces, giving rise to biphasic transients in the difference traces [22].

Anatomical context of Pontocaine


Associations of Pontocaine with other chemical compounds


Gene context of Pontocaine


Analytical, diagnostic and therapeutic context of Pontocaine


  1. V irus and lectin agglutination of erythrocytes: spin label study of membrane lipid-protein interactions. Lyles, D.S., Landsberger, F.R. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  2. Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects. Schelegle, E.S., Eldridge, M.W., Cross, C.E., Walby, W.F., Adams, W.C. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  3. The effects of tetracaine on the membrane currents and contraction of frog atrial muscle. Chapman, R.A., Leoty, C. J. Physiol. (Lond.) (1981) [Pubmed]
  4. The long lasting effects of peripheral nerve blocks for trigeminal neuralgia using high concentration of tetracaine dissolved in bupivacaine. Goto, F., Ishizaki, K., Yoshikawa, D., Obata, H., Arii, H., Terada, M. Pain (1999) [Pubmed]
  5. Corneal endothelial toxicity of topical anesthesia. Judge, A.J., Najafi, K., Lee, D.A., Miller, K.M. Ophthalmology (1997) [Pubmed]
  6. Tetracaine attenuates irritancy without attenuating desensitization produced by intravesical resiniferatoxin in the rat. Craft, R.M., Porreca, F. Pain (1994) [Pubmed]
  7. Influence of duration of lateral decubitus on the spread of hyperbaric tetracaine during spinal anesthesia: a prospective time-response study. Martin-Salvaj, G., Van Gessel, E., Forster, A., Schweizer, A., Iselin-Chaves, I., Gamulin, Z. Anesth. Analg. (1994) [Pubmed]
  8. Spinal block reveals roles for brain and spinal cord in the mediation of reflexive penile erections in rats. Sachs, B.D., Bitran, D. Brain Res. (1990) [Pubmed]
  9. Amethocaine-lidocaine cream, a new topical formulation for preventing venopuncture-induced pain in children. Cárceles, M.D., Alonso, J.M., García-Muñoz, M., Nájera, M.D., Castaño, I., Vila, N. Regional anesthesia and pain medicine. (2002) [Pubmed]
  10. Sequence of return of neurological function and criteria for safe ambulation following subarachnoid block (spinal anaesthetic). Pflug, A.E., Aasheim, G.M., Foster, C. Canadian Anaesthetists' Society journal. (1978) [Pubmed]
  11. Distribution of ring-X chromosomes in the blastoderm of gynandromorphic D. melanogaster. Zalokar, M., Erk, I., Santamaría, P. Cell (1980) [Pubmed]
  12. Inhibition of Ca2+ efflux from mitochondria by nupercaine and tetracaine. Dawson, A.P., Selwyn, M.J., Fulton, D.V. Nature (1979) [Pubmed]
  13. Influence of local anesthetics upon human polymorphonuclear leukocyte function in vitro. Reduction of lysosomal enzyme release and superoxide anion production. Goldstein, I.M., Lind, S., Hoffstein, S., Weissmann, G. J. Exp. Med. (1977) [Pubmed]
  14. Muscle surgery in patients with Graves' disease using topical anesthesia. Kalpadakis, P., Rudolph, G., Mueller, A., Boergen, K.P. Ophthalmology (2004) [Pubmed]
  15. The addition of phenylephrine contributes to the development of transient neurologic symptoms after spinal anesthesia with 0.5% tetracaine. Sakura, S., Sumi, M., Sakaguchi, Y., Saito, Y., Kosaka, Y., Drasner, K. Anesthesiology (1997) [Pubmed]
  16. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Hagelüken, A., Grünbaum, L., Nürnberg, B., Harhammer, R., Schunack, W., Seifert, R. Biochem. Pharmacol. (1994) [Pubmed]
  17. Transient neurologic symptoms when phenylephrine is added to tetracaine spinal anesthesia--an alternative. Lambert, D.H. Anesthesiology (1998) [Pubmed]
  18. Use of polymyxin B, levallorphan, and tetracaine to isolate novel envelope mutants of Escherichia coli. Dame, J.B., Shapiro, B.M. J. Bacteriol. (1976) [Pubmed]
  19. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation. Philips, M.R., Buyon, J.P., Winchester, R., Weissmann, G., Abramson, S.B. J. Clin. Invest. (1988) [Pubmed]
  20. Contraction threshold and the "hump" component of charge movement in frog skeletal muscle. Szücs, G., Csernoch, L., Magyar, J., Kovács, L. J. Gen. Physiol. (1991) [Pubmed]
  21. A structure-based approach to nicotinic receptor pharmacology. Ryan, S.E., Baenziger, J.E. Mol. Pharmacol. (1999) [Pubmed]
  22. Separation of Q beta and Q gamma charge components in frog cut twitch fibers with tetracaine. Critical comparison with other methods. Hui, C.S., Chen, W. J. Gen. Physiol. (1992) [Pubmed]
  23. Effects of local anesthetics on cell morphology and membrane-associated cytoskeletal organization in BALB/3T3 cells. Nicolson, G.L., Smith, J.R., Poste, G. J. Cell Biol. (1976) [Pubmed]
  24. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Vergara, J., Caputo, C. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  25. Cytochrome c oxidase inhibition by anesthetics: thermodynamic analysis. Vanderkooi, G., Chazotte, B. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  26. Reversal of granulocyte adherence to nylon fibers using local anesthetic agents: possible application to filtration leukapheresis. Schiffer, C.A., Sanel, F.T., Young, V.B., Aisner, J. Blood (1977) [Pubmed]
  27. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Belke, D.D., Swanson, E.A., Dillmann, W.H. Diabetes (2004) [Pubmed]
  28. Calcium pools mobilized by calcium or inositol 1,4,5-trisphosphate are differentially localized in rat heart and brain. Verma, A., Hirsch, D.J., Snyder, S.H. Mol. Biol. Cell (1992) [Pubmed]
  29. Effects of caffeine, tetracaine, and ryanodine on calcium-dependent oscillations in sheep cardiac Purkinje fibers. Nieman, C.J., Eisner, D.A. J. Gen. Physiol. (1985) [Pubmed]
  30. Differential effects of tetracaine on charge movements and Ca2+ signals in frog skeletal muscle. Csernoch, L., Huang, C.L., Szucs, G., Kovacs, L. J. Gen. Physiol. (1988) [Pubmed]
  31. Differential effect of tetracaine and bupivacaine on catecholamine and 5-hydroxytryptamine turnover. Rosenberg, P.H., Nissinen, E., Männistö, P.T., Tuomisto, L., Heavner, J.E. Pain (1987) [Pubmed]
  32. Effects of local anesthetics on phospholipase D activity in differentiated human promyelocytic leukemic HL60 cells. Tan, Z., Dohi, S., Ohguchi, K., Nakashima, S., Banno, Y., Ono, Y., Nozawa, Y. Biochem. Pharmacol. (1999) [Pubmed]
  33. Isolation and characterization of the yeast las21 mutants, which are sensitive to a local anestheticum, tetracaine. Tohe, A., Oguchi, T. Genes Genet. Syst. (1998) [Pubmed]
  34. LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Araki, T., Uesono, Y., Oguchi, T., Toh-E, A. Genes Genet. Syst. (2005) [Pubmed]
  35. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. Zheng, Y.M., Wang, Q.S., Rathore, R., Zhang, W.H., Mazurkiewicz, J.E., Sorrentino, V., Singer, H.A., Kotlikoff, M.I., Wang, Y.X. J. Gen. Physiol. (2005) [Pubmed]
  36. Involvement of the mitogen-activated protein kinase family in tetracaine-induced PC12 cell death. Tan, Z., Dohi, S., Chen, J., Banno, Y., Nozawa, Y. Anesthesiology (2002) [Pubmed]
  37. Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. Mizumori, S.J., McNaughton, B.L., Barnes, C.A., Fox, K.B. J. Neurosci. (1989) [Pubmed]
  38. Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. Tetracaine blocks the UO2(2+)-insensitive pathway. Desmedt, L., Simaels, J., Van Driessche, W. J. Gen. Physiol. (1993) [Pubmed]
  39. Electrophysiological effects of tetracaine in single guinea-pig ventricular myocytes. Carmeliet, E., Morad, M., Van der Heyden, G., Vereecke, J. J. Physiol. (Lond.) (1986) [Pubmed]
  40. Interaction of the local anesthetics dibucaine and tetracaine with sarcoplasmic reticulum membranes. Differential scanning calorimetry and fluorescence studies. Gutiérrez-Merino, C., Molina, A., Escudero, B., Diez, A., Laynez, J. Biochemistry (1989) [Pubmed]
  41. Pharmacological studies of charge movement in frog skeletal muscle. Hui, C.S. J. Physiol. (Lond.) (1983) [Pubmed]
WikiGenes - Universities