The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

COPROSTANOL     (3S,5R,8S,9S,10S,13R,14S,17R)- 10,13...

Synonyms: Stercorin, Coprosterol, Koprosterin, Koprosterol, Coprostan-3-ol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Coprosterol

 

High impact information on Coprosterol

 

Chemical compound and disease context of Coprosterol

 

Biological context of Coprosterol

  • The initiation of the establishment of conversion was delayed by breast-feeding, and only one child had coprostanol in feces while still being breast-fed [12].
  • The relationship between the concentrations of fecal sterols and bacterial indicators was examined in an attempt to develop public health criteria for coprostanol levels applicable to the tropical region [13].
  • The esterification of sterols was facilitated by the presence of a 3beta-hydroxyl group and the trans configuration of the A/B rings, as was evident from the lack of acceptor activity of all 3 alpha-hydroxy sterols tested and coprostanol [14].
  • Bioindicators of health (lipid content), condition and gonad indices (CI and GI), and sex ratio, as well as vitellins, were compared with the bioaccumulation of polycyclic aromatic compounds (PACs) including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), coprostanol, and metals [15].
  • A reduction in bacterial transformation of cholesterol to coprostanol and coprostanone was observed which lasted 1-2 weeks after 5 days' intake of oxytetracycline (1000 mg/day) [16].
 

Anatomical context of Coprosterol

 

Associations of Coprosterol with other chemical compounds

  • The submarine outfalls in Hong Kong represent important sources of the sewage pollution to the Pearl River estuarine sediments evidenced by a combination of coprostanol concentration, diagnostic indices, sterol profiles and UCM [22].
  • Conversion to coprostanol, conversion to urobilinogens and degradation of mucin were affected by treatment of zinc bacitracin and conversion to coprostanol was most sensitive [23].
  • Microbial conversion of cholesterol to coprostanol, bilirubin to urobilinogen and 7-alpha-dehydroxylation of cholic acid have been investigated to evaluate hepatic/intestinal co-functions, and degradation of intestinal mucin in order to evaluate the integrity in the intestinal mucosa [24].
  • The subjects whose feces contained smaller amount of coprostanol excreted larger amounts of beta-sitosterol and crude fiber, suggesting that the various activities of intestinal flora were lower than the other subjects [25].
  • Stigmasterol, coprostanol and epicholesterol cause only minor alterations in both translocation and interfacial processes [26].
 

Gene context of Coprosterol

  • Our results show that conversion of cholesterol to coprostanol was present in all horses, irrespective of diet [27].
  • The results indicate that patients with RA have an abnormal formation of coprostanol, which is ascribed to alterations in the function of the Eubacteria species [28].
 

Analytical, diagnostic and therapeutic context of Coprosterol

References

  1. Fecal bile acids and cholesterol metabolites of patients with ulcerative colitis, a high-risk group for development of colon cancer. Reddy, B.S., Martin, C.W., Wynder, E.L. Cancer Res. (1977) [Pubmed]
  2. Fecal steroids in diarrhea. I. Acute shigellosis. Huang, C.T., Woodward, W.E., Hornick, R.B., Rodriguez, J.T., Nichols, B.L. Am. J. Clin. Nutr. (1976) [Pubmed]
  3. Fecal bile acids and neutral sterols in rats with spontaneous colon cancer. Hayashi, E., Amuro, Y., Endo, T., Yamamoto, H., Miyamoto, M., Kishimoto, S. Int. J. Cancer (1986) [Pubmed]
  4. Plasmenylethanolamine: growth factor for cholesterol-reducing Eubacterium. Mott, G.E., Brinkley, A.W. J. Bacteriol. (1979) [Pubmed]
  5. Effect of environmental factors on the relationship between concentrations of coprostanol and fecal indicator bacteria in tropical (Mekong Delta) and temperate (Tokyo) freshwaters. Isobe, K.O., Tarao, M., Chiem, N.H., Minh, l.e. .Y., Takada, H. Appl. Environ. Microbiol. (2004) [Pubmed]
  6. Effect of bile acids and neutral sterols on benzo[a]pyrene-induced tumorigenesis in skin of mice. Watanabe, K., Narisawa, T., Wong, C.Q., Weisburger, J.H. J. Natl. Cancer Inst. (1978) [Pubmed]
  7. Bile acid metabolism in benign recurrent intrahepatic cholestasis. Comparative studies on the icteric and anicteric phases of a single case. Endo, T., Uchida, K., Amuro, Y., Higashino, K., Yamamura, Y. Gastroenterology (1979) [Pubmed]
  8. Influence of ofloxacin on the faecal flora. Midtvedt, T. Drugs (1987) [Pubmed]
  9. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Böttcher, M.F., Nordin, E.K., Sandin, A., Midtvedt, T., Björkstén, B. Clin. Exp. Allergy (2000) [Pubmed]
  10. Functional alterations of the microflora in patients with ulcerative colitis. Benno, P., Leijonmarck, C.E., Monsén, U., Uribe, A., Midtvedt, T. Scand. J. Gastroenterol. (1993) [Pubmed]
  11. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Reddy, B.S., Wynder, E.L. Cancer (1977) [Pubmed]
  12. Conversion of cholesterol to coprostanol by the intestinal microflora during the first two years of human life. Midtvedt, A.C., Midtvedt, T. J. Pediatr. Gastroenterol. Nutr. (1993) [Pubmed]
  13. Quantitative application of fecal sterols using gas chromatography-mass spectrometry to investigate fecal pollution in tropical waters: western Malaysia and Mekong Delta, Vietnam. Isobe, K.O., Tarao, M., Zakaria, M.P., Chiem, N.H., Minh, l.e. .Y., Takada, H. Environ. Sci. Technol. (2002) [Pubmed]
  14. Utilization of various sterols by lecithin-cholesterol acyltransferase as acyl acceptors. Piran, U., Nishida, T. Lipids (1979) [Pubmed]
  15. Chemical contaminants and biological indicators of mussel health during gametogenesis. Hellou, J., Yeats, P., Steller, S., Gagné, F. Environ. Toxicol. Chem. (2003) [Pubmed]
  16. Effect of oxytetracycline on bacterial intestinal metabolism of neutral sterols and on serum lipids. Korpela, J.T., Hämäläinen, E., Adlercreutz, H. Scand. J. Gastroenterol. (1984) [Pubmed]
  17. Establishment of Lactobacillus and Bifidobacterium species in germfree mice and their influence on some microflora-associated characteristics. Norin, K.E., Persson, A.K., Saxerholt, H., Midtvedt, T. Appl. Environ. Microbiol. (1991) [Pubmed]
  18. Diet and sterol biohydrogenation in the rat: occurrence of epicoprostanol. Sulpice, J.C., Ferezou, J., Lutton, C., Mathé, D., Chevallier, F. Lipids (1978) [Pubmed]
  19. Evidence of coprostanol estrogenicity to the freshwater mussel Elliptio complanata. Gagné, F., Blaise, C., Lachance, B., Sunahara, G.I., Sabik, H. Environ. Pollut. (2001) [Pubmed]
  20. Hypocholesterolemic effect of Eubacterium coprostanoligenes ATCC 51222 in rabbits. Li, L., Buhman, K.K., Hartman, P.A., Beitz, D.C. Lett. Appl. Microbiol. (1995) [Pubmed]
  21. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Gagné, F., Blaise, C., André, C. Ecotoxicol. Environ. Saf. (2006) [Pubmed]
  22. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers. Peng, X., Zhang, G., Mai, B., Hu, J., Li, K., Wang, Z. Mar. Pollut. Bull. (2005) [Pubmed]
  23. Influence of bacitracin on microbial functions in the gastrointestinal tract of horses. Collinder, E., Berge, G.N., Grønvold, B., Lindholm, A., Midtved, T., Norin, E. Equine Vet. J. (2000) [Pubmed]
  24. Influence of antibiotics on some intestinal microflora associated characteristics. Norin, K.E. Anaerobe (1997) [Pubmed]
  25. Interrelationship between serum and fecal sterols. Sekimoto, H., Shimada, O., Makanishi, M., Nakano, T., Katayama, O. Jpn. J. Med. (1983) [Pubmed]
  26. The influence of sterols on pentachlorophenol-induced charge transfer across lipid bilayers studied by alternating current methods. Pickar, A.D., Hobbs, J. Biochim. Biophys. Acta (1982) [Pubmed]
  27. Six intestinal microflora-associated characteristics in sport horses. Collinder, E., Lindholm, A., Midtvedt, T., Norin, E. Equine Vet. J. (2000) [Pubmed]
  28. Abnormal colonic microbial function in patients with rheumatoid arthritis. Benno, P., Alam, M., Henriksson, K., Norin, E., Uribe, A., Midtvedt, T. Scand. J. Rheumatol. (1994) [Pubmed]
  29. Ileal excretion and bacterial modification of bile acids and cholesterol in patients with continent ileostomy. Kay, R.M., Cohen, Z., Siu, K.P., Petrunka, C.N., Strasberg, S.M. Gut (1980) [Pubmed]
  30. High-performance liquid chromatographic method for isolating coprostanol from sediment extracts. Krahn, M.M., Wigren, C.A., Moore, L.K., Brown, D.W. J. Chromatogr. (1989) [Pubmed]
  31. Enteral nutrition and the function of the intestinal microflora in healthy adults. Leijonmarck, C.E., Carlstedt-Duke, B., Gustafsson, A., Midtvedt, A.C., Norin, K.E., Saxerholt, H., Midtvedt, T. Clinical nutrition (Edinburgh, Scotland) (1990) [Pubmed]
  32. Effect of orally administered Eubacterium coprostanoligenes ATCC 51222 on plasma cholesterol concentration in laying hens. Li, L., Baumann, C.A., Meling, D.D., Sell, J.L., Beitz, D.C. Poult. Sci. (1996) [Pubmed]
 
WikiGenes - Universities