The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

STIGMASTEROL     (3S,8S,9S,10R,13R,14S,17R)- 17-[(2S,5S)-5...

Synonyms: SureCN561648, SMP1_000280, AC1L1N7P, 83-48-7, 5,22-Stigmastadien-3|A-ol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of STIGMASTEROL

 

Psychiatry related information on STIGMASTEROL

 

High impact information on STIGMASTEROL

  • A reduction in intake of lipid emulsion to < 50 mL.kg-1.wk-1 was associated with a decrease in plasma phytosterol concentrations and an improvement in liver function tests and platelet counts in two patients [1].
  • CONCLUSIONS: Children receiving PN who have high plasma phytosterol concentrations also have cholestatic liver disease and thrombocytopenia; phytosterolemia might contribute to the pathogenesis of complications of PN [1].
  • In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6- to 32-fold [7].
  • The MSBP1 gene encodes a 220-amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro [8].
  • The availability of the SMT1 gene and mutant should permit the manipulation of phytosterol composition, which will help elucidate the role of sterols in animal nutrition [9].
 

Chemical compound and disease context of STIGMASTEROL

 

Biological context of STIGMASTEROL

 

Anatomical context of STIGMASTEROL

 

Associations of STIGMASTEROL with other chemical compounds

 

Gene context of STIGMASTEROL

  • The phytosterol-derived LXR agonist YT-32 might selectively modulate intestinal cholesterol metabolism [25].
  • Effects on the metabolism of campesterol and stigmasterol in Caenorhabditis elegans were investigated using N,N-dimethyldodecanamine, a known inhibitor of growth, reproduction and the delta 24-sterol reductase of this nematode [26].
  • 5. Investigation of the mRNA expression of ATP-binding cassette (ABC) transporters involved in intestinal phytosterol absorption indicated significant decreases in the intestinal mRNA expression of Abcg5 and Abcg8 in SHRSP and Wistar-Kyoto rats compared with Wistar rats [27].
  • Tracer enrichment of plasma cholesterol was not significantly different between the wheat germ with extracted-and-reconstituted phytosterol (0.305 +/- 0.022 micro mol tracer/mmol cholesterol) and the original wheat germ [28].
  • Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption [29].
 

Analytical, diagnostic and therapeutic context of STIGMASTEROL

References

  1. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Clayton, P.T., Bowron, A., Mills, K.A., Massoud, A., Casteels, M., Milla, P.J. Gastroenterology (1993) [Pubmed]
  2. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Salen, G., Starc, T., Sisk, C.M., Patel, S.B. Gastroenterology (2006) [Pubmed]
  3. Phytosterols and cholesterol in malignant and benign breast tumors. Mellies, M.J., Ishikawa, T.T., Glueck, C.J., Crissman, J.D. Cancer Res. (1977) [Pubmed]
  4. Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells. Clejan, S., Bittman, R. J. Biol. Chem. (1984) [Pubmed]
  5. A phytosterol-enriched spread improves the lipid profile of subjects with type 2 diabetes mellitus--a randomized controlled trial under free-living conditions. Lee, Y.M., Haastert, B., Scherbaum, W., Hauner, H. European journal of nutrition. (2003) [Pubmed]
  6. Simulation of prospective phytosterol intake in Germany by novel functional foods. Kuhlmann, K., Lindtner, O., Bauch, A., Ritter, G., Woerner, B., Niemann, B. Br. J. Nutr. (2005) [Pubmed]
  7. Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Morikawa, T., Mizutani, M., Aoki, N., Watanabe, B., Saga, H., Saito, S., Oikawa, A., Suzuki, H., Sakurai, N., Shibata, D., Wadano, A., Sakata, K., Ohta, D. Plant Cell (2006) [Pubmed]
  8. Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Yang, X.H., Xu, Z.H., Xue, H.W. Plant Cell (2005) [Pubmed]
  9. Sterol methyltransferase 1 controls the level of cholesterol in plants. Diener, A.C., Li, H., Zhou, W., Whoriskey, W.J., Nes, W.D., Fink, G.R. Plant Cell (2000) [Pubmed]
  10. Effects of isoprothiolane and phytosterol on lipogenesis and lipolysis in adipocytes from rats of dietary fat necrosis. Katamoto, H., Kurihara, S., Shimada, Y. Nippon Juigaku Zasshi (1990) [Pubmed]
  11. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. Lo, C.K., Pan, C.P., Liu, W.H. J. Ind. Microbiol. Biotechnol. (2002) [Pubmed]
  12. Isolation of 2-fluorocitrate produced by in vivo dealkylation of 29-fluorostigmasterol in an insect. Prestwich, G.D., Yamaoka, R., Phirwa, S., DePalma, A. J. Biol. Chem. (1984) [Pubmed]
  13. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. Davis, H.R., Zhu, L.J., Hoos, L.M., Tetzloff, G., Maguire, M., Liu, J., Yao, X., Iyer, S.P., Lam, M.H., Lund, E.G., Detmers, P.A., Graziano, M.P., Altmann, S.W. J. Biol. Chem. (2004) [Pubmed]
  14. Structural requirements for transformation of substrates by the S-adenosyl-L-methionine:delta 24(25)-sterol methyltransferase. Inhibition by analogs of the transition state coordinate. Janssen, G.G., Nes, W.D. J. Biol. Chem. (1992) [Pubmed]
  15. Formation and hydrolysis of triacylglycerol and sterols epoxides: role of unsaturated triacylglycerol peroxyl radicals. Giuffrida, F., Destaillats, F., Robert, F., Skibsted, L.H., Dionisi, F. Free Radic. Biol. Med. (2004) [Pubmed]
  16. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. Jones, P.J., Raeini-Sarjaz, M., Ntanios, F.Y., Vanstone, C.A., Feng, J.Y., Parsons, W.E. J. Lipid Res. (2000) [Pubmed]
  17. Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Calpe-Berdiel, L., Escolà-Gil, J.C., Ribas, V., Navarro-Sastre, A., Garcés-Garcés, J., Blanco-Vaca, F. Atherosclerosis (2005) [Pubmed]
  18. Histologic, hematologic, and biochemical characteristics of apo E-deficient mice: effects of dietary cholesterol and phytosterols. Moghadasian, M.H., Nguyen, L.B., Shefer, S., McManus, B.M., Frohlich, J.J. Lab. Invest. (1999) [Pubmed]
  19. Beta-sitosterol from psyllium seed husk (Plantago ovata Forsk) restores gap junctional intercellular communication in Ha-ras transfected rat liver cells. Nakamura, Y., Yoshikawa, N., Hiroki, I., Sato, K., Ohtsuki, K., Chang, C.C., Upham, B.L., Trosko, J.E. Nutrition and cancer. (2005) [Pubmed]
  20. Incorporation of phytosterols in human keratinocytes. Consequences on UVA-induced lipid peroxidation and calcium ionophore-induced prostaglandin release. Mora-Ranjeva, M.P., Charveron, M., Fabre, B., Milon, A., Muller, I. Chem. Phys. Lipids (2006) [Pubmed]
  21. Comparison of intestinal absorption of cholesterol with different plant sterols in man. Heinemann, T., Axtmann, G., von Bergmann, K. Eur. J. Clin. Invest. (1993) [Pubmed]
  22. Proatherogenic and antiatherogenic effects of probucol and phytosterols in apolipoprotein E-deficient mice: possible mechanisms of action. Moghadasian, M.H., McManus, B.M., Godin, D.V., Rodrigues, B., Frohlich, J.J. Circulation (1999) [Pubmed]
  23. Ginsenoside Re, a Main Phytosterol of Panax ginseng, Activates Cardiac Potassium Channels via a Nongenomic Pathway of Sex Hormones. Furukawa, T., Bai, C.X., Kaihara, A., Ozaki, E., Kawano, T., Nakaya, Y., Awais, M., Sato, M., Umezawa, Y., Kurokawa, J. Mol. Pharmacol. (2006) [Pubmed]
  24. Presence of sterol-binding sites in the cytosol of French-bean (Phaseolus vulgaris) roots. Vega, M.A., Boland, R.L. Biochem. J. (1988) [Pubmed]
  25. Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. Kaneko, E., Matsuda, M., Yamada, Y., Tachibana, Y., Shimomura, I., Makishima, M. J. Biol. Chem. (2003) [Pubmed]
  26. Inhibition of C28 and C29 phytosterol metabolism by N,N-dimethyldodecanamine in the nematode Caenorhabditis elegans. Lozano, R., Lusby, W.R., Chitwood, D.J., Thompson, M.J., Svoboda, J.A. Lipids (1985) [Pubmed]
  27. Phytosterol additives increase blood pressure and promote stroke onset in salt-loaded stroke-prone spontaneously hypertensive rats. Ogawa, H., Yamamoto, K., Kamisako, T., Meguro, T. Clin. Exp. Pharmacol. Physiol. (2003) [Pubmed]
  28. Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. Ostlund, R.E., Racette, S.B., Stenson, W.F. Am. J. Clin. Nutr. (2003) [Pubmed]
  29. Thermodynamic and molecular determinants of sterol solubilities in bile salt micelles. Armstrong, M.J., Carey, M.C. J. Lipid Res. (1987) [Pubmed]
  30. A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. Muti, P., Awad, A.B., Schünemann, H., Fink, C.S., Hovey, K., Freudenheim, J.L., Wu, Y.W., Bellati, C., Pala, V., Berrino, F. J. Nutr. (2003) [Pubmed]
  31. Separation of phytosterol oxidation products by combination of different polarity gas chromatography capillary columns. Johnsson, L., Dutta, P.C. Journal of chromatography. A. (2005) [Pubmed]
  32. Effect of sterol alterations on conjugation in Saccharomyces cerevisiae. Tomeo, M.E., Fenner, G., Tove, S.R., Parks, L.W. Yeast (1992) [Pubmed]
  33. Phytosterols, cholesterol absorption and healthy diets. Ostlund, R.E. Lipids (2007) [Pubmed]
 
WikiGenes - Universities