The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

AGTR1  -  angiotensin II receptor, type 1

Homo sapiens

Synonyms: AG2S, AGTR1A, AGTR1B, AT1, AT1AR, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of AGTR1


Psychiatry related information on AGTR1


High impact information on AGTR1

  • The AV3V region is well provided with angiotensinergic nerve endings and angiotensin AT1 receptors, the receptor type responsible for acute responses to ANG II, and it responds vigorously to the dipsogenic action of ANG II [8].
  • The vasopressor angiotensin II regulates vascular contractility and blood pressure through binding to type 1 angiotensin II receptors (AT1; refs 1, 2) [9].
  • Here we show that the AT1 receptor and the bradykinin (B2) receptor also communicate directly with each other [9].
  • AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration [9].
  • AT1 receptors mediate most known functions of angiotensin II, while AT2 receptors may be important developmentally [10].

Chemical compound and disease context of AGTR1


Biological context of AGTR1

  • Mean values of PWV were 11.6 +/- 2.7 m/s in AGTR1 AA homozygotes, 13.3 +/- 3.3 m/s in AC heterozygotes, and 15.3 +/- 4.3 m/s in CC homozygotes (P < .0001 and P < .00001 after adjustment for age and mean blood pressure, respectively) [15].
  • CONCLUSIONS: These results suggest that in hypertensive but not normotensive subjects, the AGTR1 and ACE genotypes are involved in the regulation of aortic rigidity [15].
  • RESULTS: There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups [2].
  • Five genetic polymorphisms of the RAAS (ACE, AGTR1, AGT, CMA, CYP11B2) were analyzed in all patients and the results of genetic analysis were correlated to severity of AS and LVH to determine the importance of the polymorphisms for LVH [16].
  • SNPs in the angiotensin II Type 1 receptor (AGTR1) and nitric oxide synthase 3 (NOS3) genes were significantly associated with CK activity [17].

Anatomical context of AGTR1


Associations of AGTR1 with chemical compounds


Physical interactions of AGTR1


Regulatory relationships of AGTR1


Other interactions of AGTR1

  • Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor [36].
  • In one informative family available for linkage analysis, FH-II does not segregate with either the AT1 gene or the CYP11B2 gene, or any other genetic defect in the chromosome 8q21-8qtel region [37].
  • CONCLUSION: The AGT A-20C and AGTR1 A1166C genotypes may influence resting BP response to ST, such that C-allele carriers at each of these loci reduce their resting BP in response to ST to a greater extent than A homozygotes [38].
  • Conversely, allocations of two human 3q markers (AGTR1 and IL12A) clearly excluded APC 3 [39].
  • Patients were genotyped for the angiotensinogen (M235T), the angiotensin-converting enzyme (insertion/deletion [I/D]), the angiotensin II type 1 receptor (AGTR1 A1166C), and the NOS3 (G894T) genes [40].

Analytical, diagnostic and therapeutic context of AGTR1

  • METHODS: ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls [2].
  • METHODS: We genotyped the D/I polymorphism in the ACE gene, the C(-344)T polymorphism in the CYP11B2 gene, and the C(-535)T polymorphism in the AGTR1 gene among African American and Latino members of the Multiethnic Cohort Study (MEC) to determine their association with hypertension [3].
  • Northern blots revealed AT1 and AT2 receptor messenger RNA (mRNA) expressions in all samples examined; the former was much lower than the latter [41].
  • Confocal microscopy using fluorescein-conjugated angiotensin II showed that overexpression of dynamin-1(K44A) and dynamin-2(K44A) isoforms likewise inhibited agonist-induced AT1 receptor endocytosis in CHO cells [36].
  • METHODS: We investigated the impact of the ACE, AGT, AT1, and AT2 genotypes on renal allograft function in 148 patients (77 men, 71 women) who underwent transplantation over a 5-year period [42].


  1. Angiotensin II type I receptor gene and myocardial infarction: tagging SNPs and haplotype based association study. The Beijing atherosclerosis study. Su, S., Chen, J., Zhao, J., Huang, J., Wang, X., Chen, R., Gu, D. Pharmacogenetics (2004) [Pubmed]
  2. Association between angiotensin II receptor gene polymorphism and serum angiotensin converting enzyme (SACE) activity in patients with sarcoidosis. Takemoto, Y., Sakatani, M., Takami, S., Tachibana, T., Higaki, J., Ogihara, T., Miki, T., Katsuya, T., Tsuchiyama, T., Yoshida, A., Yu, H., Tanio, Y., Ueda, E. Thorax (1998) [Pubmed]
  3. Multiple Polymorphisms in the renin- angiotensin-aldosterone system (ACE, CYP11B2, AGTR1) and their contribution to hypertension in African Americans and Latinos in the multiethnic cohort. Henderson, S.O., Haiman, C.A., Mack, W. Am. J. Med. Sci. (2004) [Pubmed]
  4. Association between polymorphisms of the renin-angiotensin system and more severe histological forms of lupus nephritis. Sprovieri, S.R., Sens, Y.A., Martini Filho, D. Clin. Nephrol. (2005) [Pubmed]
  5. Haplotypes of the angiotensin II receptor genes AGTR1 and AGTR2 in women with normotensive pregnancy and women with preeclampsia. Plummer, S., Tower, C., Alonso, P., Morgan, L., Baker, P., Broughton-Pipkin, F., Kalsheker, N. Hum. Mutat. (2004) [Pubmed]
  6. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Ge, J., Barnes, N.M. Eur. J. Pharmacol. (1996) [Pubmed]
  7. Changes in pain perception during treatment with angiotensin converting enzyme-inhibitors and angiotensin II type 1 receptor blockade. Guasti, L., Zanotta, D., Diolisi, A., Garganico, D., Simoni, C., Gaudio, G., Grandi, A.M., Venco, A. J. Hypertens. (2002) [Pubmed]
  8. Angiotensin, thirst, and sodium appetite. Fitzsimons, J.T. Physiol. Rev. (1998) [Pubmed]
  9. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. AbdAlla, S., Lother, H., Quitterer, U. Nature (2000) [Pubmed]
  10. Angiotensin receptors and their therapeutic implications. Griendling, K.K., Lassègue, B., Alexander, R.W. Annu. Rev. Pharmacol. Toxicol. (1996) [Pubmed]
  11. Angiotensin II type 1 receptor gene adenine/cytosine1166 polymorphism is not associated with mitral valve prolapse syndrome in Taiwan Chinese. Chou, H.T., Shi, Y.R., Wu, J.Y., Tsai, F.J. Circ. J. (2002) [Pubmed]
  12. Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Kurland, L., Melhus, H., Karlsson, J., Kahan, T., Malmqvist, K., Ohman, P., Nyström, F., Hägg, A., Lind, L. J. Hypertens. (2002) [Pubmed]
  13. Aldosterone synthase (CYP11B2) -344 C/T polymorphism is related to antihypertensive response: result from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Kurland, L., Melhus, H., Karlsson, J., Kahan, T., Malmqvist, K., Ohman, P., Nyström, F., Hägg, A., Lind, L. Am. J. Hypertens. (2002) [Pubmed]
  14. Angiotensin II regulates phosphoinositide 3 kinase/Akt cascade via a negative crosstalk between AT1 and AT2 receptors in skin fibroblasts of human hypertrophic scars. Liu, H.W., Cheng, B., Yu, W.L., Sun, R.X., Zeng, D., Wang, J., Liao, Y.X., Fu, X.B. Life Sci. (2006) [Pubmed]
  15. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Benetos, A., Gautier, S., Ricard, S., Topouchian, J., Asmar, R., Poirier, O., Larosa, E., Guize, L., Safar, M., Soubrier, F., Cambien, F. Circulation (1996) [Pubmed]
  16. Lack of association among five genetic polymorphisms of the renin-angiotensin system and cardiac hypertrophy in patients with aortic stenosis. Ortlepp, J.R., Breithardt, O., Ohme, F., Hanrath, P., Hoffmann, R. Am. Heart J. (2001) [Pubmed]
  17. Physiogenomic analysis links serum creatine kinase activities during statin therapy to vascular smooth muscle homeostasis. Ruaño, G., Thompson, P.D., Windemuth, A., Smith, A., Kocherla, M., Holford, T.R., Seip, R., Wu, A.H. Pharmacogenomics (2005) [Pubmed]
  18. Polymorphisms in the angiotensinogen gene are associated with carotid intimal-medial thickening in females from a community-based population. Chapman, C.M., Palmer, L.J., McQuillan, B.M., Hung, J., Burley, J., Hunt, C., Thompson, P.L., Beilby, J.P. Atherosclerosis (2001) [Pubmed]
  19. A chymase gene variant is associated with atherosclerosis in venous coronary artery bypass grafts. Ortlepp, J.R., Janssens, U., Bleckmann, F., Lauscher, J., Merkelbach-Bruse, S., Hanrath, P., Hoffmann, R. Coron. Artery Dis. (2001) [Pubmed]
  20. Polymorphisms of the renin-angiotensin system genes in Brazilian patients with lupus nephropathy. Sprovieri, S.R., Sens, Y.A. Lupus (2005) [Pubmed]
  21. Gene expression profiling reveals novel TGFbeta targets in adult lung fibroblasts. Renzoni, E.A., Abraham, D.J., Howat, S., Shi-Wen, X., Sestini, P., Bou-Gharios, G., Wells, A.U., Veeraraghavan, S., Nicholson, A.G., Denton, C.P., Leask, A., Pearson, J.D., Black, C.M., Welsh, K.I., du Bois, R.M. Respir. Res. (2004) [Pubmed]
  22. Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Hein, L., Meinel, L., Pratt, R.E., Dzau, V.J., Kobilka, B.K. Mol. Endocrinol. (1997) [Pubmed]
  23. F2-Isoprostane level is associated with the angiotensin II type 1 receptor -153A/G gene polymorphism. Ormezzano, O., Cracowski, J.L., Mallion, J.M., Poirier, O., Bessard, J., Briançon, S., François, P., Baguet, J.P. Free Radic. Biol. Med. (2005) [Pubmed]
  24. AGTR2 mutations in X-linked mental retardation. Vervoort, V.S., Beachem, M.A., Edwards, P.S., Ladd, S., Miller, K.E., de Mollerat, X., Clarkson, K., DuPont, B., Schwartz, C.E., Stevenson, R.E., Boyd, E., Srivastava, A.K. Science (2002) [Pubmed]
  25. Genetic analysis of the human type-1 angiotensin II receptor. Curnow, K.M., Pascoe, L., White, P.C. Mol. Endocrinol. (1992) [Pubmed]
  26. Congenital hyperreninemic hypoaldosteronism unlinked to the aldosterone synthase (CYP11B2) gene. Kayes-Wandover, K.M., Tannin, G.M., Shulman, D., Peled, D., Jones, K.L., Karaviti, L., White, P.C. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  27. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors. Anborgh, P.H., Seachrist, J.L., Dale, L.B., Ferguson, S.S. Mol. Endocrinol. (2000) [Pubmed]
  28. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart. Zisman, L.S., Asano, K., Dutcher, D.L., Ferdensi, A., Robertson, A.D., Jenkin, M., Bush, E.W., Bohlmeyer, T., Perryman, M.B., Bristow, M.R. Circulation (1998) [Pubmed]
  29. Losartan renography for the detection of renal artery stenosis: comparison with captopril renography and evaluation of dose and timing. Günay, E.C., Oztürk, M.H., Ergün, E.L., Altun, B., Salanci, B.V., Uğur, O., Cil, B., Hekimoğlu, B., Caner, B. Eur. J. Nucl. Med. Mol. Imaging (2005) [Pubmed]
  30. Angiotensin II stimulates human fetal mesangial cell proliferation and fibronectin biosynthesis by binding to AT1 receptors. Ray, P.E., Bruggeman, L.A., Horikoshi, S., Aguilera, G., Klotman, P.E. Kidney Int. (1994) [Pubmed]
  31. The AT2 receptor: fact, fancy and fantasy. de Gasparo, M., Siragy, H.M. Regul. Pept. (1999) [Pubmed]
  32. Angiotensin AT1 receptor upregulates expression of basic fibroblast growth factor, basic fibroblast growth factor receptor and coreceptor in human coronary smooth muscle cells. Skaletz-Rorowski, A., Pinkernell, K., Sindermann, J.R., Schriever, C., Müller, J.G., Eschert, H., Breithardt, G. Basic Res. Cardiol. (2004) [Pubmed]
  33. Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1alpha and an autocrine angiotensin system. Krick, S., Hänze, J., Eul, B., Savai, R., Seay, U., Grimminger, F., Lohmeyer, J., Klepetko, W., Seeger, W., Rose, F. FASEB J. (2005) [Pubmed]
  34. Angiotensin II receptor subtype AT1 and AT2 expression after heart transplantation. Gullestad, L., Haywood, G., Aass, H., Ross, H., Yee, G., Ueland, T., Geiran, O., Kjekshus, J., Simonsen, S., Bishopric, N., Fowler, M. Cardiovasc. Res. (1998) [Pubmed]
  35. Angiotensin II type 1 receptor expression in two cases of juxtaglomerular cell tumor: correlation to negative feedback of renin secretion by angiotensin II. Tanabe, A., Naruse, M., Naruse, K., Ito, F., Yoshimoto, T., Seki, T., Demura, R., Demura, H., Toma, H., Inagami, T. Horm. Metab. Res. (1999) [Pubmed]
  36. Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor. Gáborik, Z., Szaszák, M., Szidonya, L., Balla, B., Paku, S., Catt, K.J., Clark, A.J., Hunyady, L. Mol. Pharmacol. (2001) [Pubmed]
  37. Primary aldosteronism: learning from the study of familial varieties. Stowasser, M., Gordon, R.D. J. Hypertens. (2000) [Pubmed]
  38. Blood pressure response to strength training may be influenced by angiotensinogen A-20C and angiotensin II type I receptor A1166C genotypes in older men and women. Delmonico, M.J., Ferrell, R.E., Meerasahib, A., Martel, G.F., Roth, S.M., Kostek, M.C., Hurley, B.F. Journal of the American Geriatrics Society. (2005) [Pubmed]
  39. The human chromosome 3 gene cluster ACY1-CACNA1D-ZNF64-ATP2B2 is evolutionarily conserved in Ateles paniscus chamek (Platyrrhini, Primates). Seuánez, H.N., Lachtermacher, M., Canavez, F., Moreira, M.A. Cytogenet. Cell Genet. (1997) [Pubmed]
  40. Associations of the angiotensin II type 1 receptor A1166C and the endothelial NO synthase G894T gene polymorphisms with silent subcortical white matter lesions in essential hypertension. Henskens, L.H., Kroon, A.A., van Boxtel, M.P., Hofman, P.A., de Leeuw, P.W. Stroke (2005) [Pubmed]
  41. Type 2 angiotensin II receptor is expressed in human myometrium and uterine leiomyoma and is down-regulated during pregnancy. Matsumoto, T., Sagawa, N., Mukoyama, M., Tanaka, I., Itoh, H., Goto, M., Itoh, H., Horiuchi, M., Dzau, V.J., Mori, T., Nakao, K. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  42. Angiotensin gene polymorphism as a determinant of posttransplantation renal dysfunction and hypertension. Abdi, R., Tran, T.B., Zee, R., Brenner, B.M., Milford, E.L. Transplantation (2001) [Pubmed]
WikiGenes - Universities