The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Predict     4-chloro-5-methylamino-2-[3...

Synonyms: Solicam, Evital, Evitol, Zorial, NORFLURAZON, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Solicam


High impact information on Solicam

  • Expression of ATH1 does not require the presence of active chloroplasts because photooxidative destruction of the chloroplast by norflurazon treatment did not influence the ATH1 mRNA level [6].
  • The protein is specifically induced by blue light in mature, light-grown plants (Adamska, I., Ohad, I., and Kloppstech, K. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 2610-2613), as well as in plants developed in the light in which pigment synthesis and plastid development were inhibited by the bleaching herbicide norflurazon [7].
  • By contrast, treatment with norflurazon (an inhibitor of carotenoid biosynthesis causing a similar pale cotyledon phenotype) did not result in FSM resistance [8].
  • In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type [9].
  • To investigate how the pea PetE gene encoding plastocyanin is regulated by plastid signals, the effects of norflurazon, lincomycin and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), specific inhibitors of plastid-located processes generating plastid signals, have been examined [10].

Biological context of Solicam

  • Deletion of this element coincides with the loss of chloroplast-dependency of reporter gene expression, as judged by norflurazon treatment of transgenic seedlings [11].
  • Inhibition of chloroplast biogenesis by bleaching in the presence of norflurazon has no influence on the expression from this P1 promoter, suggesting that the onset of transcription of nuclear gene rpI21 is independent of a plastid signal [12].
  • After 1 h high light on heterotrophically grown cells in the presence of norflurazon or fluridone, photosynthesis activity in vivo and PS II activity in vitro is lost [13].
  • Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants [14].
  • The effects of growth temperature on chloroplast responses to norflurazon and amitrole, two herbicides inhibiting carotenogenesis, at phytoene desaturation and lycopene cyclization, respectively, were studied in leaves of maize plants grown at 20 degrees C and 30 degrees C in light [15].

Anatomical context of Solicam

  • In organelles of norflurazon-treated leaves neither carotenoids nor chlorophylls were detectable and the thylakoid system was dismantled [15].
  • The Lhcb transcript was not detectable in cells of norflurazon-supplied leaves, having chloroplasts totally devoid of both inner membranes and pigments [16].

Associations of Solicam with other chemical compounds


Gene context of Solicam


Analytical, diagnostic and therapeutic context of Solicam


  1. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. Chamovitz, D., Sandmann, G., Hirschberg, J. J. Biol. Chem. (1993) [Pubmed]
  2. Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Martínez-Férez, I.M., Vioque, A. Plant Mol. Biol. (1992) [Pubmed]
  3. Toxicity of the norflurazon to the aquatic macrophyte Vallisneria americana (Michx.). Wilson, P.C., Wilson, S.B., Haunert, D. J. Toxicol. Environ. Health Part A (2006) [Pubmed]
  4. Allergic contact dermatitis from norflurazon (Predict). Leow, Y.H., Maibach, H.L. Contact Derm. (1996) [Pubmed]
  5. Cloning a gene coding for norflurazon resistance in cyanobacteria. Chamovitz, D., Pecker, I., Sandmann, G., Böger, P., Hirschberg, J. Z. Naturforsch., C, J. Biosci. (1990) [Pubmed]
  6. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1. Quaedvlieg, N., Dockx, J., Rook, F., Weisbeek, P., Smeekens, S. Plant Cell (1995) [Pubmed]
  7. UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. Adamska, I., Kloppstech, K., Ohad, I. J. Biol. Chem. (1992) [Pubmed]
  8. Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Sauret-Güeto, S., Botella-Pavía, P., Flores-Pérez, U., Martínez-García, J.F., San Román, C., León, P., Boronat, A., Rodríguez-Concepción, M. Plant Physiol. (2006) [Pubmed]
  9. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Ahmad, M., Grancher, N., Heil, M., Black, R.C., Giovani, B., Galland, P., Lardemer, D. Plant Physiol. (2002) [Pubmed]
  10. Multiple plastid signals regulate the expression of the pea plastocyanin gene in pea and transgenic tobacco plants. Sullivan, J.A., Gray, J.C. Plant J. (2002) [Pubmed]
  11. The promoter of the Arabidopsis thaliana plastocyanin gene contains a far upstream enhancer-like element involved in chloroplast-dependent expression. Vorst, O., Kock, P., Lever, A., Weterings, B., Weisbeek, P., Smeekens, S. Plant J. (1993) [Pubmed]
  12. The expression of nuclear genes encoding plastid ribosomal proteins precedes the expression of chloroplast genes during early phases of chloroplast development. Harrak, H., Lagrange, T., Bisanz-Seyer, C., Lerbs-Mache, S., Mache, R. Plant Physiol. (1995) [Pubmed]
  13. Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii. Trebst, A., Depka, B. FEBS Lett. (1997) [Pubmed]
  14. Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis. Steinbrenner, J., Sandmann, G. Appl. Environ. Microbiol. (2006) [Pubmed]
  15. Responses to bleaching herbicides by leaf chloroplasts of maize plants grown at different temperatures. Vecchia, F.D., Barbato, R., La Rocca, N., Moro, I., Rascio, N. J. Exp. Bot. (2001) [Pubmed]
  16. Thylakoid dismantling of damaged unfunctional chloroplasts modulates the Cab and RbcS gene expression in wheat leaves. La Rocca, N., Barbato, R., Bonora, A., Dalla Valle, L., De Faveri, S., Rascio, N. J. Photochem. Photobiol. B, Biol. (2004) [Pubmed]
  17. Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants. Kawahigashi, H., Hirose, S., Ozawa, K., Ido, Y., Kojima, M., Ohkawa, H., Ohkawa, Y. Transgenic Res. (2005) [Pubmed]
  18. Photostabilization of the herbicide norflurazon by using organoclays. Undabeytia, T., Nir, S., Tel-Or, E., Rubin, B. J. Agric. Food Chem. (2000) [Pubmed]
  19. Effect of photooxidative destruction of chloroplasts on the expression of nuclear genes for C4 photosynthesis and for chloroplast biogenesis in maize. Tamada, Y., Imanari, E., Kurotani, K., Nakai, M., Andreo, C.S., Izui, K. J. Plant Physiol. (2003) [Pubmed]
  20. Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. Kumar, M.A., Chaturvedi, S., Söll, D. Phytochemistry (1999) [Pubmed]
  21. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Jung, S. Plant Physiol. Biochem. (2004) [Pubmed]
  22. Regulation of alternative oxidase gene expression in soybean. Djajanegara, I., Finnegan, P.M., Mathieu, C., McCabe, T., Whelan, J., Day, D.A. Plant Mol. Biol. (2002) [Pubmed]
  23. Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Ujwal, M.L., McCormac, A.C., Goulding, A., Kumar, A.M., Söll, D., Terry, M.J. Plant Mol. Biol. (2002) [Pubmed]
  24. Differential antioxidant responses to norflurazon-induced oxidative stress in maize. Jung, S., Kernodle, S.P., Scandalios, J.G. Redox Rep. (2001) [Pubmed]
  25. The molecular basis of resistance to the herbicide norflurazon. Chamovitz, D., Pecker, I., Hirschberg, J. Plant Mol. Biol. (1991) [Pubmed]
  26. Effect of two organic amendments on norflurazon retention and release by soils of different characteristics. Morillo, E., Maqueda, C., Reinoso, R., Undabeytia, T. Environ. Sci. Technol. (2002) [Pubmed]
  27. Controlled release of the herbicide norflurazon into water from ethylcellulose formulations. Sopeña, F., Cabrera, A., Maqueda, C., Morillo, E. J. Agric. Food Chem. (2005) [Pubmed]
  28. Toxicity testing of herbicide norflurazon on an aquatic bioindicator species--the planarian Polycelis felina (Daly.). Horvat, T., Kalafatić, M., Kopjar, N., Kovacević, G. Aquat. Toxicol. (2005) [Pubmed]
  29. Determination of norflurazon and desmethylnorflurazon in plant tissue by high-pressure liquid chromatography. Draper, W.M., Street, J.C. J. Agric. Food Chem. (1981) [Pubmed]
WikiGenes - Universities