The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Amitrole     2H-1,2,4-triazol-3-amine

Synonyms: Azaplant, Weedazin, Weedazol, Amitrol, Cytrole, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fenamine

  • Each component of the mast cell, MCG, or MCG-EPO system was required and toxicity was inhibited by the addition of the hemeprotein inhibitors azide or aminotriazole, which is compatible with a requirement for peroxidase in the cytotoxic reaction [1].
  • Goiters developed in all rats given amitrole (groups I-III) [2].
  • Seven papillary adenomas composed of atypical cells with hyperchromatic nuclei and many mitoses were found in the thyroid glands and grafts in amitrole-treated groups I-II [2].
  • Reduced hormone formation within Tg in vivo, due to treatment of rats with aminotriazole or of patients with Graves' disease with methimazole, resulted in increased Tg transcytosis via megalin, in confirmation of results with FRTL-5 cells [3].
  • In contrast, minimal reduction of catalase activity was found, both with and without incubation with aminotriazole, in erythrocytes of a G6PD-deficient boy who had ingested fava beans 7 days earlier and in erythrocytes of seven G6PD-deficient men with a past history of favism [4].

Psychiatry related information on Fenamine


High impact information on Fenamine


Chemical compound and disease context of Fenamine


Biological context of Fenamine


Anatomical context of Fenamine


Associations of Fenamine with other chemical compounds


Gene context of Fenamine

  • Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter [29].
  • However, fusion of SUMO to the N-terminus of Gcn5 to mimic constitutive sumoylation resulted in defective growth on 3-aminotriazole media and reduced basal and activated transcription of the SAGA-dependent gene TRP3 [30].
  • Surprisingly, increased survival in SOD1 overexpressing cultures remained evident even when H(2)O(2) catabolism was inhibited by preincubation with aminotriazole (to block catalase) and buthionine sulfoximine (to deplete glutathione) [31].
  • Administration of single doses of griseofulvin (1000 mg/kg), thioacetamide (10 mg/kg) and aminotriazole (1000 mg/kg) to DBA/2 and C57BL/6 mice produced up to 10-fold increases in hepatic COH catalytic activity [32].
  • Hypersensitivity to DMN of ER-181 cells was completely suppressed by 3-amino-1,2,4-triazole, a known inhibitor of CYP2E1 [33].

Analytical, diagnostic and therapeutic context of Fenamine


  1. Mast cell-mediated tumor-cell cytotoxicity. Role of the peroxidase system. Henderson, W.R., Chi, E.Y., Jong, E.C., Klebanoff, S.J. J. Exp. Med. (1981) [Pubmed]
  2. Tumorigenic effect of 3-amino-1H-1,2,4-triazole on rat thyroid. Tsuda, H., Hananouchi, M., Tatematsu, M., Hirose, M., Hirao, K. J. Natl. Cancer Inst. (1976) [Pubmed]
  3. Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release. Lisi, S., Pinchera, A., McCluskey, R.T., Willnow, T.E., Refetoff, S., Marcocci, C., Vitti, P., Menconi, F., Grasso, L., Luchetti, F., Collins, A.B., Marino, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  4. Active involvement of catalase during hemolytic crises of favism. Gaetani, G.F., Rolfo, M., Arena, S., Mangerini, R., Meloni, G.F., Ferraris, A.M. Blood (1996) [Pubmed]
  5. Differences in ethanol-induced behaviors in normal and acatalasemic mice: systematic examination using a biobehavioral approach. Aragon, C.M., Amit, Z. Pharmacol. Biochem. Behav. (1993) [Pubmed]
  6. Effect of chronic ethanol, catalase inhibitor 3-amino-1,2,4-triazole and clofibrate treatment on lipid peroxidation in rat myocardium. Antonenkov, V.D., Pirozhkov, S.V., Popova, S.V., Panchenko, L.F. Int. J. Biochem. (1989) [Pubmed]
  7. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates. Murray, H.W., Nathan, C.F., Cohn, Z.A. J. Exp. Med. (1980) [Pubmed]
  8. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. Zhang, J., Piantadosi, C.A. J. Clin. Invest. (1992) [Pubmed]
  9. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. Winterbourn, C.C., Stern, A. J. Clin. Invest. (1987) [Pubmed]
  10. Inhibition by 3-amino-1H-1,2,4-triazole of hepatic tumorigenesis induced by diethylstilbestrol alone or combined with N-nitrosobutylurea in WF rats. Sumi, C., Yokoro, K., Matsushima, R. J. Natl. Cancer Inst. (1985) [Pubmed]
  11. Suppression of natural killing in vitro by monocytes and polymorphonuclear leukocytes: requirement for reactive metabolites of oxygen. Seaman, W.E., Gindhart, T.D., Blackman, M.A., Dalal, B., Talal, N., Werb, Z. J. Clin. Invest. (1982) [Pubmed]
  12. Inhibition of oral cancer cell growth by adenovirusMnSOD plus BCNU treatment. Darby Weydert, C.J., Smith, B.B., Xu, L., Kregel, K.C., Ritchie, J.M., Davis, C.S., Oberley, L.W. Free Radic. Biol. Med. (2003) [Pubmed]
  13. Mechanisms of cellular resistance to hydrogen peroxide, hyperoxia, and 4-hydroxy-2-nonenal toxicity: the significance of increased catalase activity in H2O2-resistant fibroblasts. Spitz, D.R., Adams, D.T., Sherman, C.M., Roberts, R.J. Arch. Biochem. Biophys. (1992) [Pubmed]
  14. Carcinogens induce genetic tandem duplications in Salmonella. Pall, M.L., Hunter, B.J. Mutat. Res. (1985) [Pubmed]
  15. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Wagner, B.A., Evig, C.B., Reszka, K.J., Buettner, G.R., Burns, C.P. Arch. Biochem. Biophys. (2005) [Pubmed]
  16. A psychopharmacological study of the relationship between brain catalase activity and ethanol-induced locomotor activity in mice. Escarabajal, D., Miquel, M., Aragon, C.M. J. Stud. Alcohol (2000) [Pubmed]
  17. Decreased antioxidant defence and increased oxidant stress during dexamethasone-induced apoptosis: bcl-2 prevents the loss of antioxidant enzyme activity. Baker, A.F., Briehl, M.M., Dorr, R., Powis, G. Cell Death Differ. (1996) [Pubmed]
  18. Ubiquitinated-Protein Aggregates Form in Pancreatic {beta}-Cells During Diabetes-Induced Oxidative Stress and Are Regulated by Autophagy. Kaniuk, N.A., Kiraly, M., Bates, H., Vranic, M., Volchuk, A., Brumell, J.H. Diabetes (2007) [Pubmed]
  19. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. Singh, I., Pahan, K., Khan, M., Singh, A.K. J. Biol. Chem. (1998) [Pubmed]
  20. Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release. Marinò, M., Zheng, G., Chiovato, L., Pinchera, A., Brown, D., Andrews, D., McCluskey, R.T. J. Biol. Chem. (2000) [Pubmed]
  21. Hepatic cyclic GMP formation is regulated by similar factors that modulate activation of purified hepatic soluble guanylate cyclase. Wood, K.S., Ignarro, L.J. J. Biol. Chem. (1987) [Pubmed]
  22. Abnormality in catalase import into peroxisomes leads to severe neurological disorder. Sheikh, F.G., Pahan, K., Khan, M., Barbosa, E., Singh, I. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Inhibition of neutrophil cytolysin production by target cells. Dallegri, F., Patrone, F., Ballestrero, A., Frumento, G., Sacchetti, C. Blood (1986) [Pubmed]
  24. Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells. Francis, G.A., Mendez, A.J., Bierman, E.L., Heinecke, J.W. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  25. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Moehle, C.M., Hinnebusch, A.G. Mol. Cell. Biol. (1991) [Pubmed]
  26. Endogenous peroxidase in the nuclear envelope and endoplasmic reticulum of human monocytes in vitro: association with arachidonic acid metabolism. Deimann, W., Seitz, M., Gemsa, D., Fahimi, H.D. Blood (1984) [Pubmed]
  27. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Fernandes, L., Rodrigues-Pousada, C., Struhl, K. Mol. Cell. Biol. (1997) [Pubmed]
  28. Characterization of calcineurin in human neutrophils. Inhibitory effect of hydrogen peroxide on its enzyme activity and on NF-kappaB DNA binding. Carballo, M., Márquez, G., Conde, M., Martín-Nieto, J., Monteseirín, J., Conde, J., Pintado, E., Sobrino, F. J. Biol. Chem. (1999) [Pubmed]
  29. Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mangus, D.A., Amrani, N., Jacobson, A. Mol. Cell. Biol. (1998) [Pubmed]
  30. Sumoylation of the yeast Gcn5 protein. Sterner, D.E., Nathan, D., Reindle, A., Johnson, E.S., Berger, S.L. Biochemistry (2006) [Pubmed]
  31. Astrocytes overexpressing Cu,Zn superoxide dismutase have increased resistance to oxidative injury. Chen, Y., Chan, P.H., Swanson, R.A. Glia (2001) [Pubmed]
  32. Up-regulation of CYP2A5 expression by porphyrinogenic agents in mouse liver. Salonpää, P., Krause, K., Pelkonen, O., Raunio, H. Naunyn Schmiedebergs Arch. Pharmacol. (1995) [Pubmed]
  33. Stable expression of human CYP2E1 in Chinese hamster cells: high sensitivity to N,N-dimethylnitrosamine in cytotoxicity testing. Nakagawa, T., Sawada, M., Gonzalez, F.J., Yokoi, T., Kamataki, T. Mutat. Res. (1996) [Pubmed]
  34. Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain. Simonson, S.G., Zhang, J., Canada, A.T., Su, Y.F., Benveniste, H., Piantadosi, C.A. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  35. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms. Grigoryants, V., Hannawa, K.K., Pearce, C.G., Sinha, I., Roelofs, K.J., Ailawadi, G., Deatrick, K.B., Woodrum, D.T., Cho, B.S., Henke, P.K., Stanley, J.C., Eagleton, M.J., Upchurch, G.R. J. Vasc. Surg. (2005) [Pubmed]
  36. Analysis of amitrole by normal-phase liquid chromatography and tandem mass spectrometry using a sheath liquid electrospray interface. Girod, M., Delaurent, C., Charles, L. Rapid Commun. Mass Spectrom. (2006) [Pubmed]
  37. Hyperoxia increases H2O2 production by brain in vivo. Yusa, T., Beckman, J.S., Crapo, J.D., Freeman, B.A. J. Appl. Physiol. (1987) [Pubmed]
  38. Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis. Sen, P., Mukherjee, S., Bhaumik, G., Das, P., Ganguly, S., Choudhury, N., Raha, S. Mutat. Res. (2003) [Pubmed]
WikiGenes - Universities