The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Lavendustin A     5-[(2,5- dihydroxyphenyl)methyl-[(2...

Synonyms: CHEMBL103552, SureCN159085, AG-K-17704, BSPBio_001191, KBioGR_000531, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lavendustin A


High impact information on Lavendustin A


Chemical compound and disease context of Lavendustin A


Biological context of Lavendustin A

  • Similar to rod CNG channels, lavendustin A prevented this regulation, suggesting the involvement of a tyrosine phosphorylation event [12].
  • Confocal imaging of eggs coinjected with lavendustin A and Oregon Green-dextran showed that the Ca2+ wave was inhibited under normal insemination conditions but that the block of the Ca2+ wave could be overcome with very high sperm densities [13].
  • Whereas the lavendustin A partial structure is ineffective in inhibiting cell proliferation, esterification of its carboxylic acid function leads to measurable antiproliferative activity [14].
  • Pretreatment of THP-1 cells with lavendustin A and PP1 upregulated the uptake of virulent C. burnetii but had no effect on the phagocytosis of avirulent organisms [15].
  • After the same preincubation period, the IC50 of the lavendustin-A blockade was 30 +/- 15 nM [16].

Anatomical context of Lavendustin A


Associations of Lavendustin A with other chemical compounds

  • The protein tyrosine kinase (PTK) inhibitors lavendustin A and genistein were used to determine the possible role of tyrosine kinase activity during retinal development in vivo and in vitro [17].
  • These results demonstrate that nitrogen is not an essential component of the lavendustin A pharmacophore 2 and that 1,2-diarylethanes and -ethenes bearing a salicyl moiety appear to be valuable structural motifs for the construction of extremely potent PTK inhibitors [22].
  • Of the four receptor subtypes, only epsilon1/zeta1 receptor currents were affected by basal PTK inhibition via lavendustin A, whereas PTP inhibition by phenylarsine oxide or orthovanadate enhanced currents from epsilon1/zeta1 and epsilon2/zeta1 receptors [23].
  • Further, the differentiation induced by cPrG * HCl was blocked by tyrosine kinase inhibitors (lavendustin A and HMA) but unaffected by the inhibitors of A-kinase (H-89) or C-kinase (H-7) [24].
  • Furthermore, both tyrosine and serine phosphorylation of I kappa B-alpha were blocked by pretreatment with either the nonreceptor tyrosine kinase inhibitor lavendustin-A (LD-A) or the PKC inhibitor chelerythrine (Che) (both given at doses previously shown to block ischemic PC) [25].

Gene context of Lavendustin A


Analytical, diagnostic and therapeutic context of Lavendustin A


  1. Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. Kindy, M.S. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  2. A strategy for screening anti-tumor drugs utilizing oncogenes encoded in retroviral vectors. Corbley, M.J., Cherington, V., Traxler, P.M., Lydon, N.B., Roberts, T.M. Int. J. Cancer (1996) [Pubmed]
  3. Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. Dawn, B., Takano, H., Tang, X.L., Kodani, E., Banerjee, S., Rezazadeh, A., Qiu, Y., Bolli, R. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  4. Tyrosine kinase inhibitors alter composition of nicotinic receptors on neurons. Haselbeck, R.C., Berg, D.K. J. Neurobiol. (1996) [Pubmed]
  5. Involvement of spinal tyrosine kinase in inflammatory and N-methyl-D-aspartate-induced hyperalgesia in rats. Sato, E., Takano, Y., Kuno, Y., Takano, M., Sato, I. Eur. J. Pharmacol. (2003) [Pubmed]
  6. Tyrosine kinase inhibitors can differentially inhibit integrin-dependent and CAM-stimulated neurite outgrowth. Williams, E.J., Walsh, F.S., Doherty, P. J. Cell Biol. (1994) [Pubmed]
  7. Coupling of c-Src to large conductance voltage- and Ca2+-activated K+ channels as a new mechanism of agonist-induced vasoconstriction. Alioua, A., Mahajan, A., Nishimaru, K., Zarei, M.M., Stefani, E., Toro, L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Tyrosine phosphorylation is required for up-regulation of the HOX-11 (TCL-3) homeobox proto-oncogene in T cells. Zhang, N., Shen, W.F., Ho, A.D., Lu, M. Cancer Res. (1995) [Pubmed]
  9. Tyrosine phosphorylation is required for mast cell activation by Fc epsilon RI cross-linking. Kawakami, T., Inagaki, N., Takei, M., Fukamachi, H., Coggeshall, K.M., Ishizaka, K., Ishizaka, T. J. Immunol. (1992) [Pubmed]
  10. Kinetic analysis of the inhibition of the epidermal growth factor receptor tyrosine kinase by Lavendustin-A and its analogue. Hsu, C.Y., Persons, P.E., Spada, A.P., Bednar, R.A., Levitzki, A., Zilberstein, A. J. Biol. Chem. (1991) [Pubmed]
  11. Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti-infarct effect in the rabbit heart. Baines, C.P., Wang, L., Cohen, M.V., Downey, J.M. J. Mol. Cell. Cardiol. (1998) [Pubmed]
  12. Regulation of Human Cone Cyclic Nucleotide-Gated Channels by Endogenous Phospholipids and Exogenously Applied Phosphatidylinositol 3,4,5-trisphosphate. Bright, S.R., Rich, E.D., Varnum, M.D. Mol. Pharmacol. (2007) [Pubmed]
  13. Tyrosine kinase inhibitors block sperm-induced egg activation in Xenopus laevis. Glahn, D., Mark, S.D., Behr, R.K., Nuccitelli, R. Dev. Biol. (1999) [Pubmed]
  14. Novel antiproliferative agents derived from lavendustin A. Nussbaumer, P., Winiski, A.P., Cammisuli, S., Hiestand, P., Weckbecker, G., Stütz, A. J. Med. Chem. (1994) [Pubmed]
  15. Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Meconi, S., Capo, C., Remacle-Bonnet, M., Pommier, G., Raoult, D., Mege, J.L. Infect. Immun. (2001) [Pubmed]
  16. Blockade of nitric oxide synthesis by tyrosine kinase inhibitors in neurones. Rodriguez, J., Quignard, J.F., Fagni, L., Lafon-Cazal, M., Bockaert, J. Neuropharmacology (1994) [Pubmed]
  17. Inhibition of protein tyrosine kinase activity disrupts early retinal development. Li, M., Babenko, N.A., Sakaguchi, D.S. Dev. Biol. (2004) [Pubmed]
  18. Acute and chronic effects of genistein, tyrphostin and lavendustin A on steroid synthesis in luteinized human granulosa cells. Whitehead, S.A., Cross, J.E., Burden, C., Lacey, M. Hum. Reprod. (2002) [Pubmed]
  19. Lavendustin A enhances axon elongation in VHL gene-transfected neural stem cells. Murakami, K., Kanno, H., Yamamoto, I., Saito, T. Neuroreport (2004) [Pubmed]
  20. Effects of insulin and tyrosine kinase inhibitor on ion transport in the alveolar cell of the fetal lung. Hagiwara, N., Tohda, H., Doi, Y., O'Brodovich, H., Marunaka, Y. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  21. Chloride efflux during the progesterone-initiated human sperm acrosome reaction is inhibited by lavendustin A, a tyrosine kinase inhibitor. Meizel, S., Turner, K.O. J. Androl. (1996) [Pubmed]
  22. Non-amine based analogues of lavendustin A as protein-tyrosine kinase inhibitors. Smyth, M.S., Stefanova, I., Hartmann, F., Horak, I.D., Osherov, N., Levitzki, A., Burke, T.R. J. Med. Chem. (1993) [Pubmed]
  23. Insulin modulation of cloned mouse NMDA receptor currents in Xenopus oocytes. Liao, G.Y., Leonard, J.P. J. Neurochem. (1999) [Pubmed]
  24. Cycloprodigiosin hydrochloride, H(+)/CL(-) symporter, induces apoptosis and differentiation in HL-60 cells. Yamamoto, D., Uemura, Y., Tanaka, K., Nakai, K., Yamamoto, C., Takemoto, H., Kamata, K., Hirata, H., Hioki, K. Int. J. Cancer (2000) [Pubmed]
  25. Cardioprotection involves activation of NF-kappa B via PKC-dependent tyrosine and serine phosphorylation of I kappa B-alpha. Zhang, J., Ping, P., Vondriska, T.M., Tang, X.L., Wang, G.W., Cardwell, E.M., Bolli, R. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  26. Postreceptor signalling of growth hormone and prolactin and their effects in the differentiated insulin-secreting cell line, INS-1. Sekine, N., Ullrich, S., Regazzi, R., Pralong, W.F., Wollheim, C.B. Endocrinology (1996) [Pubmed]
  27. Characterization of an apoptosis inhibitory domain at the C-termini of FE65-like protein. Cao, H., Pratt, N., Mattison, J., Zhao, Y., Chang, N.S. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  28. Secretion of gelatinases and activation of gelatinase A (MMP-2) by human rheumatoid synovial fibroblasts. Smolian, H., Aurer, A., Sittinger, M., Zacher, J., Bernimoulin, J.P., Burmester, G.R., Kolkenbrock, H. Biol. Chem. (2001) [Pubmed]
  29. The role of protein tyrosine kinases in CYP1A1 induction by omeprazole and thiabendazole in rat hepatocytes. Lemaire, G., Delescluse, C., Pralavorio, M., Ledirac, N., Lesca, P., Rahmani, R. Life Sci. (2004) [Pubmed]
  30. Design, synthesis, and biological evaluation of a series of lavendustin A analogues that inhibit EGFR and Syk tyrosine kinases, as well as tubulin polymerization. Mu, F., Coffing, S.L., Riese, D.J., Geahlen, R.L., Verdier-Pinard, P., Hamel, T.E., Johnson, J., Cushman, M. J. Med. Chem. (2001) [Pubmed]
  31. Synthesis and investigation of conformationally restricted analogues of lavendustin A as cytotoxic inhibitors of tubulin polymerization. Mu, F., Lee, D.J., Pryor, D.E., Hamel, E., Cushman, M. J. Med. Chem. (2002) [Pubmed]
  32. Inhibitory effect of epidermal growth factor and hepatocyte growth factor on endothelin-1 release by rabbit proximal tubule cells. Haug, C., Linder, T.M., Schmid-Kotsas, A., Hetzel, S., Ernst, F., Gruenert, A., Jehle, P.M. J. Cardiovasc. Pharmacol. (2000) [Pubmed]
  33. Regulated cationic channel function in Xenopus oocytes expressing Drosophila big brain. Yanochko, G.M., Yool, A.J. J. Neurosci. (2002) [Pubmed]
WikiGenes - Universities