The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Diet, Protein-Restricted

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diet, Protein-Restricted

 

Psychiatry related information on Diet, Protein-Restricted

 

High impact information on Diet, Protein-Restricted

  • The mean (+/- SE) glomerular filtration rate, as measured by the clearance of 51Cr bound to EDTA, fell from 0.25 +/- 0.03 to 0.10 +/- 0.05 ml per second (P less than 0.01) in the group on the regular diet, whereas it fell from 0.23 +/- 0.04 to 0.20 +/- 0.05 ml per second (P not significant) in the group on the protein-restricted diet [10].
  • We conclude that with the low-protein diet, the absorption, metabolism, and excretion of allopurinol were minimally altered but the total-body clearance of oxypurinol was greatly reduced because of a large increase in the net renal tubular reabsorption of oxypurinol [11].
  • Active reabsorption of urea appears in the initial IMCD (IMCD1) of rats fed a low-protein diet [12].
  • With the low protein diet leucine oxidation rates during feeding correlated inversely with Uprot. losses (r = -0.83; P < 0. 05) [13].
  • Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet [14].
 

Chemical compound and disease context of Diet, Protein-Restricted

 

Biological context of Diet, Protein-Restricted

  • Maternal low protein diet (LPD) fed during only the preimplantation period of development (0-4.25 days after mating), before return to control diet for the remainder of gestation, induced programming of altered birthweight, postnatal growth rate, hypertension and organ/body-weight ratios in either male or female offspring at up to 12 weeks of age [20].
  • Feeding of a protein-free diet prior to 3,3-[14C]dimethyl-1-phenyltriazene administration reduced the formation of 7-methylguanine in liver and kidney RNA, whereas in the remaining organs the extent of methylation was markedly increased [21].
  • RESULTS: In foetuses and neonates nourished with a low protein diet, taurine supplementation restored normal DNA synthesis and apoptosis [22].
  • This intervention blocked the further increase in systolic blood pressure of rats treated with DOCA; systolic blood pressures of control rats were not influenced by the low protein diet [18].
  • In the overt model, which was produced by feeding dams a very low protein diet (6% casein) starting 5 weeks prior to conception and continued through lactation, the females showed significant weight losses at all ages compared to dams maintained on a normal diet (25% casein) [23].
 

Anatomical context of Diet, Protein-Restricted

 

Associations of Diet, Protein-Restricted with chemical compounds

 

Gene context of Diet, Protein-Restricted

  • Brain ACMSD messages were down- and up-regulated in response to low protein diet and streptozocin-induced diabetes, respectively [34].
  • The effects of a low-protein diet on the serum insulin-like growth factor (IGF)-1 and IGF binding proteins (IGFBP) were investigated during a 3-month controlled study in 12 adult chronic renal failure patients [35].
  • Moreover, treatment of HepG2 cells with amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed a low-protein diet leads to a significantly higher expression of IGFBP-1 [36].
  • In study 2, malnourished mice received the same dose of GM-CSF or saline vehicle for 7 days of the protein-free diet [37].
  • Ovariectomy increased plasma IGF-I concentration in rats fed on either a 50 g casein/kg diet (protein-restricted diet) or a 200 g casein/kg diet (control diet), but it increased IGF-I mRNA in liver only in the rats fed on the control diet [38].
 

Analytical, diagnostic and therapeutic context of Diet, Protein-Restricted

References

  1. Gangliosides of liver tumors induced by N-2-fluorenylacetamide. I. Ganglioside alterations in liver tumorigenesis and normal development. Merritt, W.D., Richardson, C.L., Keenan, T.W., Morré, D.J. J. Natl. Cancer Inst. (1978) [Pubmed]
  2. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Wingen, A.M., Fabian-Bach, C., Schaefer, F., Mehls, O. Lancet (1997) [Pubmed]
  3. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Locatelli, F., Alberti, D., Graziani, G., Buccianti, G., Redaelli, B., Giangrande, A. Lancet (1991) [Pubmed]
  4. The effect of prostaglandin E2 on ethionine-induced pancreatitis in the rat. Martin, D.M., Someren, A.O., Nasrallah, S.M. Gastroenterology (1981) [Pubmed]
  5. Dietary protein restriction rapidly reduces transforming growth factor beta 1 expression in experimental glomerulonephritis. Okuda, S., Nakamura, T., Yamamoto, T., Ruoslahti, E., Border, W.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  6. Protein intake in renal disease. Pollock, C.A., Ibels, L.S., Zhu, F.Y., Warnant, M., Caterson, R.J., Waugh, D.A., Mahony, J.F. J. Am. Soc. Nephrol. (1997) [Pubmed]
  7. Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. Hong, S.O., Layman, D.K. J. Nutr. (1984) [Pubmed]
  8. Splenocyte subsets in normal and protein malnourished mice after long-term exposure to cocaine or morphine. Lopez, M.C., Huang, D.S., Watzl, B., Chen, G.J., Watson, R.R. Life Sci. (1991) [Pubmed]
  9. Malnutrition during lactation as a metabolic imprinting factor inducing the feeding pattern of offspring rats when adults. The role of insulin and leptin. Moura, A.S., Franco de Sá, C.C., Cruz, H.G., Costa, C.L. Braz. J. Med. Biol. Res. (2002) [Pubmed]
  10. The effect of protein restriction on the progression of renal insufficiency. Ihle, B.U., Becker, G.J., Whitworth, J.A., Charlwood, R.A., Kincaid-Smith, P.S. N. Engl. J. Med. (1989) [Pubmed]
  11. The effect of dietary protein on the clearance of allopurinol and oxypurinol. Berlinger, W.G., Park, G.D., Spector, R. N. Engl. J. Med. (1985) [Pubmed]
  12. Evidence for sodium-dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. Kato, A., Sands, J.M. J. Clin. Invest. (1998) [Pubmed]
  13. Mechanisms permitting nephrotic patients to achieve nitrogen equilibrium with a protein-restricted diet. Maroni, B.J., Staffeld, C., Young, V.R., Manatunga, A., Tom, K. J. Clin. Invest. (1997) [Pubmed]
  14. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. Sands, J.M., Naruse, M., Jacobs, J.D., Wilcox, J.N., Klein, J.D. J. Clin. Invest. (1996) [Pubmed]
  15. Clinical features of carbamyl phosphate synthetase-I deficiency in an adult. Call, G., Seay, A.R., Sherry, R., Qureshi, I.A. Ann. Neurol. (1984) [Pubmed]
  16. Pamidronate prevents bone loss and decreased bone strength in adult female and male rats fed an isocaloric low-protein diet. Mekraldi, S., Toromanoff, A., Rizzoli, R., Ammann, P. J. Bone Miner. Res. (2005) [Pubmed]
  17. The effect of a low protein diet with amino acid/keto acid supplements on glucose metabolism in children with uremia. Mak, R.H., Turner, C., Thompson, T., Haycock, G., Chantler, C. J. Clin. Endocrinol. Metab. (1986) [Pubmed]
  18. Vascular changes in DOCA hypertension. Influence of a low protein diet. Moreland, R.S., Webb, R.C., Bohr, D.F. Hypertension (1982) [Pubmed]
  19. Tandem antifibrotic actions of L-arginine supplementation and low protein diet during the repair phase of experimental glomerulonephritis. Peters, H., Border, W.A., Noble, N.A. Kidney Int. (2000) [Pubmed]
  20. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Kwong, W.Y., Wild, A.E., Roberts, P., Willis, A.C., Fleming, T.P. Development (2000) [Pubmed]
  21. Interaction of the carcinogen 3,3-dimethyl-1-phenyltriazene with nucleic acids of various rat tissues and the effect of a protein-free diet. Kleihues, P., Kolar, G.F., Margison, G.P. Cancer Res. (1976) [Pubmed]
  22. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Boujendar, S., Reusens, B., Merezak, S., Ahn, M.T., Arany, E., Hill, D., Remacle, C. Diabetologia (2002) [Pubmed]
  23. Overt and hidden forms of chronic malnutrition in the rat and their relevance to man. Resnick, O., Morgane, P.J., Hasson, R., Miller, M. Neuroscience and biobehavioral reviews. (1982) [Pubmed]
  24. Low protein intake is associated with impaired titanium implant osseointegration. Dayer, R., Rizzoli, R., Kaelin, A., Ammann, P. J. Bone Miner. Res. (2006) [Pubmed]
  25. Contribution of skeletal muscle protein in elevated rates of whole body protein catabolism in trauma patients. Long, C.L., Birkhahn, R.H., Geiger, J.W., Blakemore, W.S. Am. J. Clin. Nutr. (1981) [Pubmed]
  26. Decreased serum 3,5,3'-triiodothyronine (T3) and abnormal serum binding of T3 in calorie-deficient rats: adaptation after chronic underfeeding. Glass, A.R., Young, R.A., Anderson, J. Endocrinology (1986) [Pubmed]
  27. Effect of level of dietary protein on arginine-stimulated citrulline synthesis. Correlation with mitochondrial N-acetylglutamate concentrations. Morimoto, B.H., Brady, J.F., Atkinson, D.E. Biochem. J. (1990) [Pubmed]
  28. Regulation of hepatocyte glutathione by amino acid precursors and cAMP in protein-energy malnourished rats. Goss, P.M., Bray, T.M., Nagy, L.E. J. Nutr. (1994) [Pubmed]
  29. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. Isozaki, T., Verlander, J.W., Sands, J.M. J. Clin. Invest. (1993) [Pubmed]
  30. Modulation of rat skeletal muscle branched-chain alpha-keto acid dehydrogenase in vivo. Effects of dietary protein and meal consumption. Block, K.P., Aftring, R.P., Mehard, W.B., Buse, M.G. J. Clin. Invest. (1987) [Pubmed]
  31. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat. Fernández-Repollet, E., Tapia, E., Martínez-Maldonado, M. J. Clin. Invest. (1987) [Pubmed]
  32. The pattern of intestinal substrate oxidation is altered by protein restriction in pigs. van der Schoor, S.R., van Goudoever, J.B., Stoll, B., Henry, J.F., Rosenberger, J.R., Burrin, D.G., Reeds, P.J. Gastroenterology (2001) [Pubmed]
  33. hyperprolactinemia of portal hypertension in rats. Bauer, A.G., de Greef, W.J., de Jong, F.H., Wilson, J.H., Lamberts, S.W. Gastroenterology (1982) [Pubmed]
  34. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". Fukuoka, S., Ishiguro, K., Yanagihara, K., Tanabe, A., Egashira, Y., Sanada, H., Shibata, K. J. Biol. Chem. (2002) [Pubmed]
  35. Insulin-like growth factor-1 and its binding proteins during a low-protein diet in chronic renal failure. Fouque, D., Le Bouc, Y., Laville, M., Combarnous, F., Joly, M.O., Raton, P., Zech, P. J. Am. Soc. Nephrol. (1995) [Pubmed]
  36. Physiological concentration of amino acids regulates insulin-like-growth-factor-binding protein 1 expression. Jousse, C., Bruhat, A., Ferrara, M., Fafournoux, P. Biochem. J. (1998) [Pubmed]
  37. Antimicrobial effects of granulocyte-macrophage colony-stimulating factor in protein-energy malnutrition. Hill, A.D., Naama, H., Shou, J., Calvano, S.E., Daly, J.M. Archives of surgery (Chicago, Ill. : 1960) (1995) [Pubmed]
  38. Effect of protein restriction on messenger RNA of insulin-like growth factor-I and insulin-like growth factor-binding proteins in liver of ovariectomized rats. Higashi, Y., Takenaka, A., Takahashi, S., Noguchi, T. Br. J. Nutr. (1998) [Pubmed]
  39. Renal response to restricted protein intake in diabetic nephropathy. Bending, J.J., Dodds, R.A., Keen, H., Viberti, G.C. Diabetes (1988) [Pubmed]
  40. Growth in experimental renal failure: role of calorie and amino acid intake. Diaz, M., Kleinknecht, C., Broyer, M. Kidney Int. (1975) [Pubmed]
  41. Lifetime consequences of abnormal fetal pancreatic development. Holemans, K., Aerts, L., Van Assche, F.A. J. Physiol. (Lond.) (2003) [Pubmed]
  42. Low protein diet blunts the rise in glomerular gene expression in focal glomerulosclerosis. Nakamura, T., Fukui, M., Ebihara, I., Tomino, Y., Koide, H. Kidney Int. (1994) [Pubmed]
  43. Effect of hyperfiltration, proteinuria and diabetes mellitus on the uptake kinetics of gentamicin in the kidney cortex of rats. Pattyn, V.M., Verpooten, G.A., Giuliano, R.A., Zheng, F., De Broe, M.E. J. Pharmacol. Exp. Ther. (1988) [Pubmed]
 
WikiGenes - Universities