The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

polypyrrole     pyrrole

Synonyms: AC1MX919, 1H-pyrrolium, 577030_ALDRICH, 578177_ALDRICH, 1H-pyrrol-1-ium
This record was replaced with 8027.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Imidole


Psychiatry related information on Imidole

  • With the exception of rare immunoreactive Pick bodies in one case of Pick's disease, no other structure was recognized by HNE pyrrole adduct antiserum in this series of patients [1].
  • We examined a model reaction leading to meso-triphenylcorrole (TPC) to survey the effect of acid catalyst, acid concentration, ratio of pyrrole to dipyrromethanedicarbinol, oxidant, oxidant quantity, and reaction time on the yield of TPC (by UV-vis) in reactions performed at room temperature in CH(2)Cl(2) [5].

High impact information on Imidole

  • An Im/Py pair distinguishes G x C from C x G and both of these from A x T/T x A base pairs [6].
  • In mammals and yeast, 5-aminolaevulinic acid dehydratase is a zinc-dependent enzyme that catalyses the synthesis of porphobilinogen-the pyrrole building block that is incorporated into all modified tetrapyrroles, including haem, chlorophyll and vitamin B12 [7].
  • The study establishes that the central pyrrole N-CH3 substituent of 2 can be replaced by bulky polyamine metal ligands to create any number of compounds that bind into the minor groove at A + T-rich sites and are putative catalysts for the hydrolysis of DNA [8].
  • Using liquid chromatography electrospray tandem mass spectrometry, we established that LGs form oxidized pyrrole adducts (lactams and hydroxylactams) with the epsilon-amino group of lysine [9].
  • Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network [10].

Chemical compound and disease context of Imidole


Biological context of Imidole

  • The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D [16].
  • This alkylation stereochemistry requires addition of the pyrrole nitrogen and the activated oxygen to the same side of the double bond, a reaction geometry opposite to that expected if the heme were alkylated by the epoxide metabolite [17].
  • Highly stable self-assembly in water: ion pair driven dimerization of a guanidiniocarbonyl pyrrole carboxylate zwitterion [18].
  • 2'-Deoxy-3,7-dideazaguanosine and related compounds. Synthesis of 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl) and 1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]pyridin-4(5H)-one via direct glycosylation of a pyrrole precursor [19].
  • Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove [20].

Anatomical context of Imidole


Associations of Imidole with other chemical compounds

  • Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern [16].
  • Aging of proteins: immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo [25].
  • The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (Compound 1) inhibits the growth of Eimeria spp. both in vitro and in vivo [26].
  • The affinities and specificities of the hydroxybenzimidazole/pyrrole (Hz/Py) and hydroxybenzimidazole/benzimidazole (Hz/Bi) pairs for each of the respective Watson-Crick base pairs within the sequence context 5'-TGGXCA-3' (X = A, T, G, C) were measured by quantitative DNaseI footprinting titrations [27].
  • In an approach to helical self-aggregation, C2-symmetric cavity compounds based on the fusion of the bicyclo[3.3.1]nonane and indole framework and incorporating two 2-pyridone hydrogen-bonding motifs, compounds (-)-4 (pyrrole N-butyl) and (-)-5 (pyrrole N-decyl), have been synthesized [28].

Gene context of Imidole

  • Tetrasubstituted pyrroles containing groups such as COCF3, SO2CF3, or CH2OAr at position 3 in the pyrrole ring give excellent inhibitors (COX-2, IC50 = 30-120 nm) [29].
  • X-ray crystal structure of the ternary complex of 3a, DHFR, and NADPH showed that the pyrrolo[2, 3-d]pyrimidine ring binds in a "2,4-diamino mode" in which the pyrrole nitrogen mimics the 4-amino moiety of 2,4-diaminopyrimidines [30].
  • Three classes of 3-substituted indolin-2-ones containing propionic acid functionality attached to the pyrrole ring at the C-3 position of the core have been identified as catalytic inhibitors of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) RTKs [31].
  • Purified native rabbit lung CYP4B1 and purified recombinant rabbit CYP4B1 produced the trapped NAC/NAL-IPO pyrrole adduct at rates of 600-700 nmol/nmol P450/30 min [32].
  • We used a biochemical assay to identify 3-[5-methyl-2- (2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-proprionic acid (SU10944), a pyrrole indolinone, which is a potent ATP-competitive inhibitor of VEGFR-2 (Ki of 21 +/- 5 nM) [33].

Analytical, diagnostic and therapeutic context of Imidole


  1. 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. Montine, K.S., Kim, P.J., Olson, S.J., Markesbery, W.R., Montine, T.J. J. Neuropathol. Exp. Neurol. (1997) [Pubmed]
  2. Right ventricular failure--insights provided by a new model of chronic pulmonary hypertension. Chen, E.P., Bittner, H.B., Davis, R.D., Van Trigt, P. Transplantation (1997) [Pubmed]
  3. Synthesis and antitumor activity of duocarmycin derivatives: modification of segment-A of A-ring pyrrole compounds. Amishiro, N., Okamoto, A., Murakata, C., Tamaoki, T., Okabe, M., Saito, H. J. Med. Chem. (1999) [Pubmed]
  4. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Deidda, D., Lampis, G., Fioravanti, R., Biava, M., Porretta, G.C., Zanetti, S., Pompei, R. Antimicrob. Agents Chemother. (1998) [Pubmed]
  5. A survey of acid catalysis and oxidation conditions in the two-step, one-flask synthesis of meso-substituted corroles via dipyrromethanedicarbinols and pyrrole. Geier, G.R., Chick, J.F., Callinan, J.B., Reid, C.G., Auguscinski, W.P. J. Org. Chem. (2004) [Pubmed]
  6. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. White, S., Szewczyk, J.W., Turner, J.M., Baird, E.E., Dervan, P.B. Nature (1998) [Pubmed]
  7. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Warren, M.J., Cooper, J.B., Wood, S.P., Shoolingin-Jordan, P.M. Trends Biochem. Sci. (1998) [Pubmed]
  8. Rational design of substituted tripyrrole peptides that complex with DNA by both selective minor-groove binding and electrostatic interaction with the phosphate backbone. Bruice, T.C., Mei, H.Y., He, G.X., Lopez, V. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. New developments in the isoprostane pathway: identification of novel highly reactive gamma-ketoaldehydes (isolevuglandins) and characterization of their protein adducts. Roberts, L.J., Salomon, R.G., Morrow, J.D., Brame, C.J. FASEB J. (1999) [Pubmed]
  10. Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction. Sugishima, M., Sakamoto, H., Higashimoto, Y., Noguchi, M., Fukuyama, K. J. Biol. Chem. (2003) [Pubmed]
  11. Effects of taurine and guanidinoethane sulfonate on toxicity of the pyrrolizidine alkaloid monocrotaline. Yan, C.C., Huxtable, R.J. Biochem. Pharmacol. (1996) [Pubmed]
  12. Monocrotaline pyrrole-induced cardiopulmonary toxicity is not altered by metergoline or ketanserin. Ganey, P.E., Sprugel, K.H., Hadley, K.B., Roth, R.A. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  13. Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Omura, H., Wieser, M., Nagasawa, T. Eur. J. Biochem. (1998) [Pubmed]
  14. HIV-1 integrase inhibition by pyrrole/imidazole-containing polyamides. Zakharova, O.D., Baranova, S., Parissi, V., Ryabinin, V.A., Sinyakov, A.N., Litvak, S., Litvak, L.T., Nevinsky, G.A. J. Pept. Res. (2005) [Pubmed]
  15. N-conjugates of 2,5-disubstituted pyrrole and glutathione. Evaluation of their potency as antioxidants against photosensitization of NCTC 2544 keratinocytes by excess endogenous protoporphyrin IX. Gaullier, J.M., Valla, A., Bazin, M., Giraud, M., Dubertret, L., Santus, R. J. Photochem. Photobiol. B, Biol. (1997) [Pubmed]
  16. Active site topologies of bacterial cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3). In situ rearrangement of their phenyl-iron complexes. Tuck, S.F., Peterson, J.A., Ortiz de Montellano, P.R. J. Biol. Chem. (1992) [Pubmed]
  17. Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation. Ortiz de Montellano, P.R., Mangold, B.L., Wheeler, C., Kunze, K.L., Reich, N.O. J. Biol. Chem. (1983) [Pubmed]
  18. Highly stable self-assembly in water: ion pair driven dimerization of a guanidiniocarbonyl pyrrole carboxylate zwitterion. Schmuck, C., Wienand, W. J. Am. Chem. Soc. (2003) [Pubmed]
  19. 2'-Deoxy-3,7-dideazaguanosine and related compounds. Synthesis of 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl) and 1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]pyridin-4(5H)-one via direct glycosylation of a pyrrole precursor. Girgis, N.S., Cottam, H.B., Larson, S.B., Robins, R.K. Nucleic Acids Res. (1987) [Pubmed]
  20. Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove. Kielkopf, C.L., Bremer, R.E., White, S., Szewczyk, J.W., Turner, J.M., Baird, E.E., Dervan, P.B., Rees, D.C. J. Mol. Biol. (2000) [Pubmed]
  21. The effects of monocrotaline pyrrole on cultured bovine pulmonary artery endothelial and smooth muscle cells. Reindel, J.F., Roth, R.A. Am. J. Pathol. (1991) [Pubmed]
  22. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. Lamé, M.W., Jones, A.D., Wilson, D.W., Dunston, S.K., Segall, H.J. J. Biol. Chem. (2000) [Pubmed]
  23. Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer's disease is associated with inheritance of APOE4. Montine, K.S., Olson, S.J., Amarnath, V., Whetsell, W.O., Graham, D.G., Montine, T.J. Am. J. Pathol. (1997) [Pubmed]
  24. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. Montine, K.S., Reich, E., Neely, M.D., Sidell, K.R., Olson, S.J., Markesbery, W.R., Montine, T.J. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  25. Aging of proteins: immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo. Hayase, F., Nagaraj, R.H., Miyata, S., Njoroge, F.G., Monnier, V.M. J. Biol. Chem. (1989) [Pubmed]
  26. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic target. Gurnett, A.M., Liberator, P.A., Dulski, P.M., Salowe, S.P., Donald, R.G., Anderson, J.W., Wiltsie, J., Diaz, C.A., Harris, G., Chang, B., Darkin-Rattray, S.J., Nare, B., Crumley, T., Blum, P.S., Misura, A.S., Tamas, T., Sardana, M.K., Yuan, J., Biftu, T., Schmatz, D.M. J. Biol. Chem. (2002) [Pubmed]
  27. Expanding the repertoire of heterocycle ring pairs for programmable minor groove DNA recognition. Marques, M.A., Doss, R.M., Foister, S., Dervan, P.B. J. Am. Chem. Soc. (2004) [Pubmed]
  28. An approach to helical tubular self-aggregation using C2-symmetric self-complementary hydrogen-bonding cavity molecules. Stoncius, S., Orentas, E., Butkus, E., Ohrström, L., Wendt, O.F., Wärnmark, K. J. Am. Chem. Soc. (2006) [Pubmed]
  29. 1,2-Diarylpyrroles as potent and selective inhibitors of cyclooxygenase-2. Khanna, I.K., Weier, R.M., Yu, Y., Collins, P.W., Miyashiro, J.M., Koboldt, C.M., Veenhuizen, A.W., Currie, J.L., Seibert, K., Isakson, P.C. J. Med. Chem. (1997) [Pubmed]
  30. Design, synthesis, and X-ray crystal structure of a potent dual inhibitor of thymidylate synthase and dihydrofolate reductase as an antitumor agent. Gangjee, A., Yu, J., McGuire, J.J., Cody, V., Galitsky, N., Kisliuk, R.L., Queener, S.F. J. Med. Chem. (2000) [Pubmed]
  31. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. Sun, L., Tran, N., Liang, C., Tang, F., Rice, A., Schreck, R., Waltz, K., Shawver, L.K., McMahon, G., Tang, C. J. Med. Chem. (1999) [Pubmed]
  32. Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate. Baer, B.R., Rettie, A.E., Henne, K.R. Chem. Res. Toxicol. (2005) [Pubmed]
  33. A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability. Patel, N., Sun, L., Moshinsky, D., Chen, H., Leahy, K.M., Le, P., Moss, K.G., Wang, X., Rice, A., Tam, D., Laird, A.D., Yu, X., Zhang, Q., Tang, C., McMahon, G., Howlett, A. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  34. Relationship of active site topology to substrate specificity for cytochrome P450terp (CYP108). Fruetel, J.A., Mackman, R.L., Peterson, J.A., Ortiz de Montellano, P.R. J. Biol. Chem. (1994) [Pubmed]
  35. Allosteric transitions in cobalt hemoglobins. Chien, J.C., Snyder, F.W. J. Biol. Chem. (1976) [Pubmed]
  36. Vascular changes in the lungs of rats after the intravenous injection of pyrrole carbamates. Plestina, R., Stoner, H.B., Jones, G., Butler, W.H., Mattocks, A.R. J. Pathol. (1977) [Pubmed]
  37. How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis. Wang, S.Y., Mitchell, J., Tikhonov, D.B., Zhorov, B.S., Wang, G.K. Mol. Pharmacol. (2006) [Pubmed]
WikiGenes - Universities