The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

trxA  -  thioredoxin

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of trxA

 

High impact information on trxA

  • Each of these regions contains the presumed active site sequence Trp-Cys-Gly-His-Cys-Lys, suggesting that PDI, similar in action to thioredoxin, catalyses disulphide bond interchange via an internal disulphide-sulphydryl interchange [5].
  • DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm [6].
  • Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm [7].
  • The results indicate that thionein (T), which is formed when the zinc is removed from Zn-MT, can function as a reducing system for the Msr proteins because of its high content of cysteine residues and that Trx can reduce oxidized T [8].
  • A heat-stable protein has been detected in bovine liver that, in the presence of EDTA, can support the Msr reaction in the absence of either Trx or DTT [8].
 

Chemical compound and disease context of trxA

 

Biological context of trxA

 

Anatomical context of trxA

 

Associations of trxA with chemical compounds

  • The increased expression of the grxA gene in trxA gshA double mutant bacteria was mimicked in trxA single mutant cells by depletion of GSH with diethylmaleate (DEM) [24].
  • Sequencing of the DNA region located upstream of the alpha-acetolactate synthase and decarboxylase (alsS-alsD) cluster of Oenococcus oeni allowed identification of an ORF, named trxA [25].
  • Together they catalyze the reduction of CDP to dCDP, using dithiothreitol or reduced glutaredoxin, but not thioredoxin, as an electron donor [26].
  • Asp substitutions at buried sites in two other proteins, maltose-binding protein and thioredoxin, also were shown to be severely destabilizing [27].
  • Genetic manipulations of the amounts of intracellular glutathione, NADPH, alpha-ketoacids, ferredoxin, and thioredoxin indicated that none of these was the direct electron donor [28].
 

Physical interactions of trxA

  • The high catalytic efficiency with which Nt-TrR can reduce thioredoxin implies that the attached N-terminal domain does not block access of thioredoxin to the TrR-derived Cys342-Cys345 center of Nt-TrR nor does it impede the putative conformational changes that this part of Nt-TrR is proposed to undergo during catalysis [29].
 

Regulatory relationships of trxA

 

Other interactions of trxA

 

Analytical, diagnostic and therapeutic context of trxA

References

  1. Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans: Identification and characterization of a novel thioredoxin 2. Sarin, R., Sharma, Y.D. Gene (2006) [Pubmed]
  2. Isolation, sequence, and expression in Escherichia coli of an unusual thioredoxin gene from the cyanobacterium Anabaena sp. strain PCC 7120. Alam, J., Curtis, S., Gleason, F.K., Gerami-Nejad, M., Fuchs, J.A. J. Bacteriol. (1989) [Pubmed]
  3. Expression, purification and X-ray crystallographic analysis of thioredoxin from Streptomyces coelicolor. Stefankova, P., Maderova, J., Barak, I., Kollarova, M., Otwinowski, Z. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2005) [Pubmed]
  4. A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor. Hamdan, S.M., Marintcheva, B., Cook, T., Lee, S.J., Tabor, S., Richardson, C.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  5. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Edman, J.C., Ellis, L., Blacher, R.W., Roth, R.A., Rutter, W.J. Nature (1985) [Pubmed]
  6. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Stewart, E.J., Katzen, F., Beckwith, J. EMBO J. (1999) [Pubmed]
  7. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda, S., Huber-Wunderlich, M., Glockshuber, R., Mössner, E. EMBO J. (1999) [Pubmed]
  8. Thionein can serve as a reducing agent for the methionine sulfoxide reductases. Sagher, D., Brunell, D., Hejtmancik, J.F., Kantorow, M., Brot, N., Weissbach, H. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  9. A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Kashima, Y., Ishikawa, K. Arch. Biochem. Biophys. (2003) [Pubmed]
  10. Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells. Tsang, M.L., Weatherbee, J.A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  11. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. Mora-García, S., Rodríguez-Suárez, R., Wolosiuk, R.A. J. Biol. Chem. (1998) [Pubmed]
  12. The role of the buried aspartate of Escherichia coli thioredoxin in the activation of the mixed disulfide intermediate. LeMaster, D.M., Springer, P.A., Unkefer, C.J. J. Biol. Chem. (1997) [Pubmed]
  13. The Thioredoxin Domain of Neisseria gonorrhoeae PilB Can Use Electrons from DsbD to Reduce Downstream Methionine Sulfoxide Reductases. Brot, N., Collet, J.F., Johnson, L.C., J??nsson, T.J., Weissbach, H., Lowther, W.T. J. Biol. Chem. (2006) [Pubmed]
  14. In vitro construction of gshB::kan in Escherichia coli and use of gshB::kan in mapping the gshB locus. Daws, T., Lim, C.J., Fuchs, J.A. J. Bacteriol. (1989) [Pubmed]
  15. The thioredoxin reductase system of mycoplasmas. Ben-Menachem, G., Himmelreich, R., Herrmann, R., Aharonowitz, Y., Rottem, S. Microbiology (Reading, Engl.) (1997) [Pubmed]
  16. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., McCoy, J.M. Biotechnology (N.Y.) (1993) [Pubmed]
  17. Genetic and physical analysis of the thioredoxin (trxA) gene of Escherichia coli K-12. Wallace, B.J., Kushner, S.R. Gene (1984) [Pubmed]
  18. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Kumar, J.K., Tabor, S., Richardson, C.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  19. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Tao, L., Gao, E., Bryan, N.S., Qu, Y., Liu, H.R., Hu, A., Christopher, T.A., Lopez, B.L., Yodoi, J., Koch, W.J., Feelisch, M., Ma, X.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. Rubartelli, A., Bajetto, A., Allavena, G., Wollman, E., Sitia, R. J. Biol. Chem. (1992) [Pubmed]
  21. The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. Spector, A., Yan, G.Z., Huang, R.R., McDermott, M.J., Gascoyne, P.R., Pigiet, V. J. Biol. Chem. (1988) [Pubmed]
  22. Evidence that the endogenous heat-stable glucocorticoid receptor-activating factor is thioredoxin. Grippo, J.F., Tienrungroj, W., Dahmer, M.K., Housley, P.R., Pratt, W.B. J. Biol. Chem. (1983) [Pubmed]
  23. Human eosinophil cytotoxicity-enhancing factor. II. Multiple forms synthesized by U937 cells and their relationship to thioredoxin/adult T cell leukemia-derived factor. Balcewicz-Sablinska, M.K., Wollman, E.E., Gorti, R., Silberstein, D.S. J. Immunol. (1991) [Pubmed]
  24. In vivo transcription of nrdAB operon and of grxA and fpg genes is triggered in Escherichia coli lacking both thioredoxin and glutaredoxin 1 or thioredoxin and glutathione, respectively. Gallardo-Madueño, R., Leal, J.F., Dorado, G., Holmgren, A., López-Barea, J., Pueyo, C. J. Biol. Chem. (1998) [Pubmed]
  25. Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. Jobin, M.P., Garmyn, D., Diviès, C., Guzzo, J. Microbiology (Reading, Engl.) (1999) [Pubmed]
  26. A second class I ribonucleotide reductase in Enterobacteriaceae: characterization of the Salmonella typhimurium enzyme. Jordan, A., Pontis, E., Atta, M., Krook, M., Gibert, I., Barbé, J., Reichard, P. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  27. Mutagenesis-based definitions and probes of residue burial in proteins. Bajaj, K., Chakrabarti, P., Varadarajan, R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. Woodmansee, A.N., Imlay, J.A. J. Biol. Chem. (2002) [Pubmed]
  29. Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity. Reynolds, C.M., Poole, L.B. Biochemistry (2000) [Pubmed]
  30. Genetic analysis of the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin. Himawan, J.S., Richardson, C.C. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  31. 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. Williams, R.A., Kelly, S.M., Mottram, J.C., Coombs, G.H. J. Biol. Chem. (2003) [Pubmed]
  32. Exploring protein-folding ensembles: a variable-barrier model for the analysis of equilibrium unfolding experiments. Muñoz, V., Sanchez-Ruiz, J.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  33. Replacement of Trp28 in Escherichia coli thioredoxin by site-directed mutagenesis affects thermodynamic stability but not function. Slaby, I., Cerna, V., Jeng, M.F., Dyson, H.J., Holmgren, A. J. Biol. Chem. (1996) [Pubmed]
  34. Real-time kinetics of the interaction between the two subunits, Escherichia coli thioredoxin and gene 5 protein of phage T7 DNA polymerase. Singha, N.C., Vlamis-Gardikas, A., Holmgren, A. J. Biol. Chem. (2003) [Pubmed]
  35. The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. Evans, T.C., Benner, J., Xu, M.Q. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities