The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Acaca  -  acetyl-Coenzyme A carboxylase alpha

Mus musculus

Synonyms: A530025K05Rik, ACC-alpha, ACC1, Acac, Acc1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Acaca

 

Psychiatry related information on Acaca

 

High impact information on Acaca

 

Chemical compound and disease context of Acaca

 

Biological context of Acaca

 

Anatomical context of Acaca

 

Associations of Acaca with chemical compounds

 

Enzymatic interactions of Acaca

 

Regulatory relationships of Acaca

 

Other interactions of Acaca

 

Analytical, diagnostic and therapeutic context of Acaca

References

  1. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Abu-Elheiga, L., Matzuk, M.M., Kordari, P., Oh, W., Shaikenov, T., Gu, Z., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  2. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Abu-Elheiga, L., Oh, W., Kordari, P., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. Fang, X., Palanivel, R., Zhou, X., Liu, Y., Xu, A., Wang, Y., Sweeney, G. J. Mol. Endocrinol. (2005) [Pubmed]
  4. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Hu, Z., Cha, S.H., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Effect of food deprivation and hormones of glucose homeostasis on the acetyl CoA carboxylase activity in mouse brain: a potential role of acc in the regulation of energy balance. Karami, K.J., Coppola, J., Krishnamurthy, K., Llanos, D.J., Mukherjee, A., Venkatachalam, K. Nutrition & metabolism [electronic resource]. (2006) [Pubmed]
  6. c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. Molero, J.C., Jensen, T.E., Withers, P.C., Couzens, M., Herzog, H., Thien, C.B., Langdon, W.Y., Walder, K., Murphy, M.A., Bowtell, D.D., James, D.E., Cooney, G.J. J. Clin. Invest. (2004) [Pubmed]
  7. Fatty acids are required for epidermal permeability barrier function. Mao-Qiang, M., Elias, P.M., Feingold, K.R. J. Clin. Invest. (1993) [Pubmed]
  8. Lipid metabolism and enzyme activities in hormone-dependent and hormone-independent mammary adenocarcinoma in GR mice. Abraham, S., Briand, P., Hansen, F.N. J. Natl. Cancer Inst. (1986) [Pubmed]
  9. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Mao, J., DeMayo, F.J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T.E., Kordari, P., Chirala, S.S., Heird, W.C., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  10. Alterations in acetyl coenzyme A carboxylase activities in voles and mice treated with monosodium aspartate. Arai, T., Sasaki, M., Shiomi, M., Nonaka, T., Ochiai, K., Oki, Y. J. Vet. Med. Sci. (1992) [Pubmed]
  11. The Role of Hypothalamic Malonyl-CoA in Energy Homeostasis. Wolfgang, M.J., Lane, M.D. J. Biol. Chem. (2006) [Pubmed]
  12. Acetyl-CoA carboxylase gene expression in the developing mouse brain. Comparison with other genes involved in lipid biosynthesis. Garbay, B., Bauxis-Lagrave, S., Boiron-Sargueil, F., Elson, G., Cassagne, C. Brain Res. Dev. Brain Res. (1997) [Pubmed]
  13. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Dentin, R., Benhamed, F., Hainault, I., Fauveau, V., Foufelle, F., Dyck, J.R., Girard, J., Postic, C. Diabetes (2006) [Pubmed]
  14. A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. Levert, K.L., Waldrop, G.L., Stephens, J.M. J. Biol. Chem. (2002) [Pubmed]
  15. Acetyl-CoA carboxylase and SREBP expression during peripheral nervous system myelination. Salles, J., Sargueil, F., Knoll-Gellida, A., Witters, L.A., Cassagne, C., Garbay, B. Biochim. Biophys. Acta (2003) [Pubmed]
  16. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. Campbell, F.M., Kozak, R., Wagner, A., Altarejos, J.Y., Dyck, J.R., Belke, D.D., Severson, D.L., Kelly, D.P., Lopaschuk, G.D. J. Biol. Chem. (2002) [Pubmed]
  17. Trans10,cis12-18:2 is a more potent inhibitor of de novo fatty acid synthesis and desaturation than cis9,trans11-18:2 in the mammary gland of lactating mice. Lin, X., Loor, J.J., Herbein, J.H. J. Nutr. (2004) [Pubmed]
  18. Acetyl-CoA carboxylase beta expression mediated by MyoD and muscle regulatory factor 4 is differentially affected by retinoic acid receptor and retinoid X receptor. Kim, J.Y., Lee, J.J., Kim, K.S. Exp. Mol. Med. (2003) [Pubmed]
  19. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Oh, W., Abu-Elheiga, L., Kordari, P., Gu, Z., Shaikenov, T., Chirala, S.S., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  20. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Harada, N., Oda, Z., Hara, Y., Fujinami, K., Okawa, M., Ohbuchi, K., Yonemoto, M., Ikeda, Y., Ohwaki, K., Aragane, K., Tamai, Y., Kusunoki, J. Mol. Cell. Biol. (2007) [Pubmed]
  21. Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Lane, M.D., Hu, Z., Cha, S.H., Dai, Y., Wolfgang, M., Sidhaye, A. Biochem. Soc. Trans. (2005) [Pubmed]
  22. Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity. Gonzalez, A.A., Kumar, R., Mulligan, J.D., Davis, A.J., Weindruch, R., Saupe, K.W. Am. J. Physiol. Endocrinol. Metab. (2004) [Pubmed]
  23. Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. Bai, Y., Zhang, S., Kim, K.S., Lee, J.K., Kim, K.H. J. Biol. Chem. (1996) [Pubmed]
  24. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism. LaRosa, C., Downs, S.M. Mol. Reprod. Dev. (2005) [Pubmed]
  25. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. Liang, G., Yang, J., Horton, J.D., Hammer, R.E., Goldstein, J.L., Brown, M.S. J. Biol. Chem. (2002) [Pubmed]
  26. Aberrant Hepatic Expression of PPAR{gamma}2 Stimulates Hepatic Lipogenesis in a Mouse Model of Obesity, Insulin Resistance, Dyslipidemia, and Hepatic Steatosis. Zhang, Y.L., Hernandez-Ono, A., Siri, P., Weisberg, S., Conlon, D., Graham, M.J., Crooke, R.M., Huang, L.S., Ginsberg, H.N. J. Biol. Chem. (2006) [Pubmed]
  27. Marginal maternal biotin deficiency in CD-1 mice reduces fetal mass of biotin-dependent carboxylases. Sealey, W.M., Stratton, S.L., Mock, D.M., Hansen, D.K. J. Nutr. (2005) [Pubmed]
 
WikiGenes - Universities