The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Fasn  -  fatty acid synthase

Mus musculus

Synonyms: A630082H08Rik, FAS, Fatty acid synthase
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fasn


Psychiatry related information on Fasn


High impact information on Fasn


Chemical compound and disease context of Fasn


Biological context of Fasn


Anatomical context of Fasn


Associations of Fasn with chemical compounds


Physical interactions of Fasn


Enzymatic interactions of Fasn


Regulatory relationships of Fasn


Other interactions of Fasn

  • Furthermore, in vivo occupancy of the FAS promoter by SREBP in the fed state can be prevented by mutation not only of the -150 SRE but, unexpectedly, of the -65 E-box as well [18].
  • Immunogold electron microscopy (EM) revealed that the glycogen pools were the prominent cellular sites for FAS and CCT-alpha [29].
  • The level of FAS and SERCA2 mRNA expression is increased rapidly after FGF-1 addition; in contrast, PFK mRNA is induced with kinetics more typical of delayed-early genes [21].
  • Two transcription factors, Upstream Stimulatory Factor (USF) and Sterol Regulatory Element Binding Protein-lc (SREBP-lc), seem to play a dominant and possibly cooperative role in regulating FAS transcription [22].
  • Treatment of apoB/BATless mice for 4 weeks with intraperitoneal injections of a PPARgamma antisense oligonucleotide resulted in dramatic reductions of both PPARgamma1 and PPARgamma2 mRNA, PPARgamma2 protein, and mRNA levels of fatty-acid synthase and acetyl-CoA carboxylase [30].

Analytical, diagnostic and therapeutic context of Fasn


  1. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. Sun, L., Halaihel, N., Zhang, W., Rogers, T., Levi, M. J. Biol. Chem. (2002) [Pubmed]
  2. "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Chakravarthy, M.V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J.G., Coleman, T., Turk, J., Semenkovich, C.F. Cell metabolism. (2005) [Pubmed]
  3. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. Osei-Hyiaman, D., DePetrillo, M., Pacher, P., Liu, J., Radaeva, S., Bátkai, S., Harvey-White, J., Mackie, K., Offertáler, L., Wang, L., Kunos, G. J. Clin. Invest. (2005) [Pubmed]
  4. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Shimokawa, T., Kumar, M.V., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Lane, M.D., Hu, Z., Cha, S.H., Dai, Y., Wolfgang, M., Sidhaye, A. Biochem. Soc. Trans. (2005) [Pubmed]
  6. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Hu, Z., Cha, S.H., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  7. Rescue of in vivo FAS-induced apoptosis of hepatocytes by corticosteroids either associated with alcohol consumption by mice or provided exogenously. Sosa, L., Vidlak, D., Strachota, J.M., Pavlik, J., Jerrells, T.R. Int. Immunopharmacol. (2005) [Pubmed]
  8. Inhibition of food intake by inhibitors of fatty acid synthase. Bouchard, C. N. Engl. J. Med. (2000) [Pubmed]
  9. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Loftus, T.M., Jaworsky, D.E., Frehywot, G.L., Townsend, C.A., Ronnett, G.V., Lane, M.D., Kuhajda, F.P. Science (2000) [Pubmed]
  10. Genetic dissection of SLE: SLE1 and FAS impact alternate pathways leading to lymphoproliferative autoimmunity. Shi, X., Xie, C., Kreska, D., Richardson, J.A., Mohan, C. J. Exp. Med. (2002) [Pubmed]
  11. Fatty acid synthase blockade protects steatotic livers from warm ischemia reperfusion injury and transplantation. Chavin, K.D., Fiorini, R.N., Shafizadeh, S., Cheng, G., Wan, C., Evans, Z., Rodwell, D., Polito, C., Haines, J.K., Baillie, G.M., Schmidt, M.G. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. (2004) [Pubmed]
  12. The connections between C75 and obesity drug-target pathways. Kuhajda, F.P., Landree, L.E., Ronnett, G.V. Trends Pharmacol. Sci. (2005) [Pubmed]
  13. The effects of calcium channel blockade on agouti-induced obesity. Kim, J.H., Mynatt, R.L., Moore, J.W., Woychik, R.P., Moustaid, N., Zemel, M.B. FASEB J. (1996) [Pubmed]
  14. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. McFadden, J.M., Medghalchi, S.M., Thupari, J.N., Pinn, M.L., Vadlamudi, A., Miller, K.I., Kuhajda, F.P., Townsend, C.A. J. Med. Chem. (2005) [Pubmed]
  15. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Pizer, E.S., Pflug, B.R., Bova, G.S., Han, W.F., Udan, M.S., Nelson, J.B. Prostate (2001) [Pubmed]
  16. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Chirala, S.S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahon, K., Finegold, M., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  17. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Cha, S.H., Hu, Z., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. Occupancy and function of the -150 sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Latasa, M.J., Griffin, M.J., Moon, Y.S., Kang, C., Sul, H.S. Mol. Cell. Biol. (2003) [Pubmed]
  19. Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. Wang, D., Sul, H.S. J. Biol. Chem. (1997) [Pubmed]
  20. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Schadinger, S.E., Bucher, N.L., Schreiber, B.M., Farmer, S.R. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  21. Fibroblast growth factor-1 induces phosphofructokinase, fatty acid synthase and Ca(2+)-ATPase mRNA expression in NIH 3T3 cells. Hsu, D.K., Donohue, P.J., Alberts, G.F., Winkles, J.A. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  22. Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. Griffin, M.J., Sul, H.S. IUBMB Life (2004) [Pubmed]
  23. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Latasa, M.J., Moon, Y.S., Kim, K.H., Sul, H.S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  24. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. Casado, M., Vallet, V.S., Kahn, A., Vaulont, S. J. Biol. Chem. (1999) [Pubmed]
  25. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. Wang, Y., Botolin, D., Christian, B., Busik, J., Xu, J., Jump, D.B. J. Lipid Res. (2005) [Pubmed]
  26. Structure of mouse fatty acid synthase mRNA. Identification of the two NADPH binding sites. Paulauskis, J.D., Sul, H.S. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  27. Short-term administration of (-)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Fiorini, R.N., Donovan, J.L., Rodwell, D., Evans, Z., Cheng, G., May, H.D., Milliken, C.E., Markowitz, J.S., Campbell, C., Haines, J.K., Schmidt, M.G., Chavin, K.D. Liver Transpl. (2005) [Pubmed]
  28. Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. Chakravarthy, M.V., Zhu, Y., López, M., Yin, L., Wozniak, D.F., Coleman, T., Hu, Z., Wolfgang, M., Vidal-Puig, A., Lane, M.D., Semenkovich, C.F. J. Clin. Invest. (2007) [Pubmed]
  29. Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells. Ridsdale, R., Post, M. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  30. Aberrant Hepatic Expression of PPAR{gamma}2 Stimulates Hepatic Lipogenesis in a Mouse Model of Obesity, Insulin Resistance, Dyslipidemia, and Hepatic Steatosis. Zhang, Y.L., Hernandez-Ono, A., Siri, P., Weisberg, S., Conlon, D., Graham, M.J., Crooke, R.M., Huang, L.S., Ginsberg, H.N. J. Biol. Chem. (2006) [Pubmed]
  31. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. Kim, J.B., Sarraf, P., Wright, M., Yao, K.M., Mueller, E., Solanes, G., Lowell, B.B., Spiegelman, B.M. J. Clin. Invest. (1998) [Pubmed]
  32. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Ettinger, S.L., Sobel, R., Whitmore, T.G., Akbari, M., Bradley, D.R., Gleave, M.E., Nelson, C.C. Cancer Res. (2004) [Pubmed]
  33. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. Paulauskis, J.D., Sul, H.S. J. Biol. Chem. (1988) [Pubmed]
  34. Effect of specific dietary fatty acids on lipogenesis in the livers and mammary glands of lactating mice. Abraham, S., Hillyard, L.A., Lin, C.Y., Schwartz, R.S. Lipids (1983) [Pubmed]
WikiGenes - Universities