The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Vipr1  -  vasoactive intestinal peptide receptor 1

Mus musculus

Synonyms: AV071699, PACAP type II receptor, PACAP-R-2, PACAP-R2, Pituitary adenylate cyclase-activating polypeptide type II receptor, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vipr1


High impact information on Vipr1


Biological context of Vipr1

  • The mouse Vipr1 gene is encoded by a single gene, which was mapped to the distal region of mouse chromosome 9 [7].
  • The differential mRNA expression of VIP receptor subtypes in cells with different phenotypes and in different immune compartments may suggest diverse regulatory roles of the neuropeptide in immune responses [8].
  • This region is syntenic with human chromosome 3p, where the human VPAC1 receptor gene has been mapped [7].
  • The inhibition is associated with a profound down-regulation of FasL expression, and these effects are mediated through both VPAC1 and VPAC2 receptors [9].
  • Evidence for the involvement of VPAC1 and VPAC2 receptors in pressure-induced vasodilatation in rodents [10].

Anatomical context of Vipr1


Associations of Vipr1 with chemical compounds

  • RESULTS: While RRV infected mice had diarrhoea for 3.3 (0.2) days (95% confidence interval (CI) 3.04-3.56), the 5-HT(3) receptor antagonist (granisetron) and the VIP receptor antagonist (4Cl-D-Phe(6),Leu(17))-VIP both reduced the total number of days of RRV induced diarrhoea to 2.1 (0.3) (95% CI 1.31-2.9) (p<0.01) [13].
  • The VIP/PACAP effects on iDC and LPS-stimulated DC are mediated primarily through the VIP receptor 1 [14].
  • The specific type 1 VIP receptor mediates the inhibitory effect of VIP/PACAP, and cyclic adenosine monophosphate is the major, second messenger involved [15].
  • The effects of VIP and [Cys2]VIP on intracellular cyclic AMP and ConA-stimulated proliferation were competed for by the VIP receptor antagonist [4Cl-D-Phe6,Leu17]VIP [16].

Physical interactions of Vipr1

  • VIP/PACAP binding to VPAC1 induces both a cAMP-dependent and a cAMP-independent pathways that regulate cytokine and NO production at the transcriptional level [17].

Regulatory relationships of Vipr1

  • [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP, and antagonist for the VIP receptor which markedly inhibited the VIP-induced cAMP accumulation, had little effect on the PACAP-induced cAMP accumulation [18].

Other interactions of Vipr1


Analytical, diagnostic and therapeutic context of Vipr1


  1. VIP attenuation of the severity of experimental pancreatitis is due to VPAC1 receptor-mediated inhibition of cytokine production. Kojima, M., Ito, T., Oono, T., Hisano, T., Igarashi, H., Arita, Y., Kawabe, K., Coy, D.H., Jensen, R.T., Nawata, H. Pancreas (2005) [Pubmed]
  2. Breast cancer growth is inhibited by vasoactive intestinal peptide (VIP) hybrid, a synthetic VIP receptor antagonist. Zia, H., Hida, T., Jakowlew, S., Birrer, M., Gozes, Y., Reubi, J.C., Fridkin, M., Gozes, I., Moody, T.W. Cancer Res. (1996) [Pubmed]
  3. T cell vasoactive intestinal peptide receptor subtype expression differs between granulomas and spleen of schistosome-infected mice. Metwali, A., Elliott, D., Blum, A.M., Li, J., Sandor, M., Weinstock, J.V. J. Immunol. (1996) [Pubmed]
  4. Neuronal release of vasoactive intestinal peptide is important to astrocytic protection of neurons from glutamate toxicity. Brown, D.R. Mol. Cell. Neurosci. (2000) [Pubmed]
  5. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K., Nagata, S. Neuron (1992) [Pubmed]
  6. Enhancement by vasoactive intestinal peptide of gamma-interferon production by antigen-stimulated type 1 helper T cells. Jabrane-Ferrat, N., Bloom, D., Wu, A., Li, L., Lo, D., Sreedharan, S.P., Turck, C.W., Goetzl, A.E. FASEB J. (1999) [Pubmed]
  7. Genomic organization and chromosomal location of the mouse vasoactive intestinal polypeptide 1 (VPAC1) receptor. Hashimoto, H., Nishino, A., Shintani, N., Hagihara, N., Copeland, N.G., Jenkins, N.A., Yamamoto, K., Matsuda, T., Ishihara, T., Nagata, S., Baba, A. Genomics (1999) [Pubmed]
  8. Differential expression of vasoactive intestinal polypeptide receptor 1 and 2 mRNA in murine intestinal T lymphocyte subtypes. Qian, B.F., Hammarström, M.L., Danielsson, A. J. Neuroendocrinol. (2001) [Pubmed]
  9. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit T cell-mediated cytotoxicity by inhibiting Fas ligand expression. Delgado, M., Ganea, D. J. Immunol. (2000) [Pubmed]
  10. Evidence for the involvement of VPAC1 and VPAC2 receptors in pressure-induced vasodilatation in rodents. Fizanne, L., Sigaudo-Roussel, D., Saumet, J.L., Fromy, B. J. Physiol. (Lond.) (2004) [Pubmed]
  11. Excitatory actions of vasoactive intestinal peptide on mouse thalamocortical neurons are mediated by VPAC2 receptors. Lee, S.H., Cox, C.L. J. Neurophysiol. (2006) [Pubmed]
  12. Pituitary adenylate cyclase-activating polypeptide inhibits cutaneous immune function. Kodali, S., Friedman, I., Ding, W., Seiffert, K., Wagner, J.A., Granstein, R.D. Eur. J. Immunol. (2003) [Pubmed]
  13. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. Gut (2004) [Pubmed]
  14. VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4(+) T cells. Delgado, M., Reduta, A., Sharma, V., Ganea, D. J. Leukoc. Biol. (2004) [Pubmed]
  15. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. Delgado, M., Leceta, J., Ganea, D. J. Leukoc. Biol. (2003) [Pubmed]
  16. Role of sulfhydryl groups in the binding of vasoactive intestinal peptide to its receptor on murine lymphocytes. Ottaway, C.A. J. Neuroimmunol. (1992) [Pubmed]
  17. Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP. Leceta, J., Gomariz, R.P., Martinez, C., Abad, C., Ganea, D., Delgado, M. Ann. N. Y. Acad. Sci. (2000) [Pubmed]
  18. Pituitary adenylate cyclase-activating polypeptide induces cAMP production independently from vasoactive intestinal polypeptide in osteoblast-like cells. Suzuki, A., Kotoyori, J., Oiso, Y., Kozawa, O. Cell. Signal. (1994) [Pubmed]
  19. Characterisation of the Mouse Vasoactive Intestinal Peptide Receptor Type 2 Gene, Vipr2, and Identification of a Polymorphic LINE-1-like Sequence That Confers Altered Promoter Activity. Steel, G., Lutz, E.M. J. Neuroendocrinol. (2007) [Pubmed]
  20. (N-stearyl, norleucine17)VIPhybrid is a broad spectrum vasoactive intestinal peptide receptor antagonist. Moody, T.W., Jensen, R.T., Fridkin, M., Gozes, I. J. Mol. Neurosci. (2002) [Pubmed]
  21. Upregulation of neuropeptides and neuropeptide receptors in a murine model of immune inflammation in lung parenchyma. Kaltreider, H.B., Ichikawa, S., Byrd, P.K., Ingram, D.A., Kishiyama, J.L., Sreedharan, S.P., Warnock, M.L., Beck, J.M., Goetzl, E.J. Am. J. Respir. Cell Mol. Biol. (1997) [Pubmed]
  22. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. Delgado, M., Munoz-Elias, E.J., Gomariz, R.P., Ganea, D. J. Immunol. (1999) [Pubmed]
  23. Suppression of tumorigenicity in neuroblastoma cells by upregulation of human vasoactive intestinal peptide receptor type 1. Balster, D.A., O'Dorisio, M.S., Albers, A.R., Park, S.K., Qualman, S.J. Regul. Pept. (2002) [Pubmed]
  24. Pre-clinical study on tumor vasoactive intestinal peptide receptor scintigraphy. Wang, X., Zhang, M., Yang, Z., Lin, B., Zhang, Q. Zhonghua Zhong Liu Za Zhi (2002) [Pubmed]
WikiGenes - Universities