The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ACTN1  -  actinin, alpha 1

Gallus gallus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RCJMB04_23c5

  • The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli [1].
  • The blebs contained both actin and alpha-actinin [2].
  • Finally, we searched for the occurrence of a cross-linking protein in these cyanobacteria and identified a 105-kDa protein as an alpha-actinin-like protein using specific antibodies [3].

High impact information on RCJMB04_23c5


Biological context of RCJMB04_23c5

  • The sequence differs from that of smooth muscle alpha-actinin only in the region of the first EF-hand calcium-binding motif, where 27 residues in brain alpha-actinin are replaced by just 22 residues in the smooth muscle isoform [6].
  • Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin [6].
  • Nebulette, a cardiac homologue of nebulin, colocalizes with alpha-actinin in the pre-myofibrils of spreading cardiomyocytes and has been hypothesized to play a critical role in the formation of the thin-filament-Z-line complex early during myofibrillogenesis [7].
  • Our results indicate that residues 86-117 and 350-375 comprise distinct binding sites for alpha-actinin on adjacent actin monomers [8].
  • Analysis of 800 residues of deduced amino acid sequence at the amino-terminal end revealed a strikingly conserved domain of integral of 230 residues that shows a high degree of sequence similarity to the amino-terminal domains of alpha actinin and dystrophin [9].

Anatomical context of RCJMB04_23c5


Associations of RCJMB04_23c5 with chemical compounds


Physical interactions of RCJMB04_23c5


Enzymatic interactions of RCJMB04_23c5


Co-localisations of RCJMB04_23c5


Regulatory relationships of RCJMB04_23c5


Other interactions of RCJMB04_23c5


Analytical, diagnostic and therapeutic context of RCJMB04_23c5

  • The distribution of the mean squared displacements of these microspheres becomes progressively more asymmetric and wider for increasing concentration in alpha-actinin and, to a lesser extent, for increasing actin concentration, which suggests that F-actin networks become progressively heterogeneous for increasing protein content [29].
  • By immunoelectron microscopy the podocyte foot processes of the rat and human kidney have been shown to contain three major proteins of the contractile apparatus in muscle, i.e., actin, myosin, and the Z-line protein, alpha-actinin [30].
  • Assuming that actin, myosin, and alpha-actinin are arranged in a way that would allow the foot processes to generate contractile force this filament system might help the glomerular capillaries to resist the high intraluminal hydrostatic pressure as well as to actively modify the surface area for filtration [30].
  • In indirect immunofluorescence, these two views have revealed that desmin is present at the periphery of each Z disc, forming a network of proteinaceous collars within the Z plane. alpha-Actinin is localized within each disc, giving a face-on fluorescence pattern that is complementary to that of desmin [4].
  • Immunofluorescence microscope studies using these antisera revealed that Z-protein has the same distribution as alpha-actinin in isolated Z-disk sheets [31].


  1. Analysis of the actin-binding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. Hemmings, L., Kuhlman, P.A., Critchley, D.R. J. Cell Biol. (1992) [Pubmed]
  2. Intracellular relationship between actin and alpha-actinin in a whole corneal epithelial tissue. Khoory, W., Wu, E., Svoboda, K.K. J. Cell. Sci. (1993) [Pubmed]
  3. Coevolution of actin and associated proteins: an alpha-actinin-like protein in a cyanobacterium (Spirulina platensis). Usmanova, A., Astier, C., Méjean, C., Hubert, F., Feinberg, J., Benyamin, Y., Roustan, C. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (1998) [Pubmed]
  4. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Granger, B.L., Lazarides, E. Cell (1978) [Pubmed]
  5. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Fukami, K., Furuhashi, K., Inagaki, M., Endo, T., Hatano, S., Takenawa, T. Nature (1992) [Pubmed]
  6. Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin. Waites, G.T., Graham, I.R., Jackson, P., Millake, D.B., Patel, B., Blanchard, A.D., Weller, P.A., Eperon, I.C., Critchley, D.R. J. Biol. Chem. (1992) [Pubmed]
  7. Expression of nebulette during early cardiac development. Esham, M., Bryan, K., Milnes, J., Holmes, W.B., Moncman, C.L. Cell Motil. Cytoskeleton (2007) [Pubmed]
  8. Determination of the alpha-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis. McGough, A., Way, M., DeRosier, D. J. Cell Biol. (1994) [Pubmed]
  9. Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin. Byers, T.J., Husain-Chishti, A., Dubreuil, R.R., Branton, D., Goldstein, L.S. J. Cell Biol. (1989) [Pubmed]
  10. Isolation and characterization of a cDNA encoding a chick alpha-actinin. Baron, M.D., Davison, M.D., Jones, P., Patel, B., Critchley, D.R. J. Biol. Chem. (1987) [Pubmed]
  11. The sequence of chick alpha-actinin reveals homologies to spectrin and calmodulin. Baron, M.D., Davison, M.D., Jones, P., Critchley, D.R. J. Biol. Chem. (1987) [Pubmed]
  12. Primary structure of chicken skeletal muscle and fibroblast alpha-actinins deduced from cDNA sequences. Arimura, C., Suzuki, T., Yanagisawa, M., Imamura, M., Hamada, Y., Masaki, T. Eur. J. Biochem. (1988) [Pubmed]
  13. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. Pomiès, P., Louis, H.A., Beckerle, M.C. J. Cell Biol. (1997) [Pubmed]
  14. Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. Mueller, S.C., Yeh, Y., Chen, W.T. J. Cell Biol. (1992) [Pubmed]
  15. Formation and alignment of Z lines in living chick myotubes microinjected with rhodamine-labeled alpha-actinin. McKenna, N.M., Johnson, C.S., Wang, Y.L. J. Cell Biol. (1986) [Pubmed]
  16. alpha-Actinin localization in the junctional complex of intestinal epithelial cells. Craig, S.W., Pardo, J.V. J. Cell Biol. (1979) [Pubmed]
  17. Comparison of intestinal brush-border 95-Kdalton polypeptide and alpha-actinins. Craig, S.W., Lancashire, C.L. J. Cell Biol. (1980) [Pubmed]
  18. Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. McGregor, A., Blanchard, A.D., Rowe, A.J., Critchley, D.R. Biochem. J. (1994) [Pubmed]
  19. Smooth muscle alpha-actinin interaction with smitin. Chi, R.J., Olenych, S.G., Kim, K., Keller, T.C. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  20. Phosphorylation of actin-binding proteins by casein kinases 1 and 2. Nakajo, S., Nakaya, K., Nakamura, Y. Biochem. Int. (1987) [Pubmed]
  21. N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. Wu, J.C., Chung, T.H., Tseng, Y.Z., Wang, S.M. J. Cell. Biochem. (1999) [Pubmed]
  22. Augmentation of alpha-actinin-induced gelation of actin by talin. Muguruma, M., Matsumura, S., Fukazawa, T. J. Biol. Chem. (1992) [Pubmed]
  23. Basic fibroblast and platelet-derived growth factors as modulators of actin and alpha-actinin in chick myocardiocytes during development. Vélez, C., Aránega, A.E., Prados, J.C., Melguizo, C., Alvarez, L., Aránega, A. Proc. Soc. Exp. Biol. Med. (1995) [Pubmed]
  24. Stress fiber and cleavage furrow formation in living cells microinjected with fluorescently labeled alpha-actinin. Sanger, J.M., Mittal, B., Pochapin, M.B., Sanger, J.W. Cell Motil. Cytoskeleton (1987) [Pubmed]
  25. The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. Tseng, Y., An, K.M., Esue, O., Wirtz, D. J. Biol. Chem. (2004) [Pubmed]
  26. Identification of cytoskeletal, focal adhesion, and cell adhesion proteins in growth cone particles isolated from developing chick brain. Cypher, C., Letourneau, P.C. J. Neurosci. Res. (1991) [Pubmed]
  27. Microfilament-organizing centers in areas of cell contact: cytoskeletal interactions during cell attachment and locomotion. Geiger, B., Avnur, Z., Rinnerthaler, G., Hinssen, H., Small, V.J. J. Cell Biol. (1984) [Pubmed]
  28. Subcellular localization of S100A11 (S100C, calgizzarin) in developing and adult avian skeletal muscles. Arcuri, C., Giambanco, I., Bianchi, R., Donato, R. Biochim. Biophys. Acta (2002) [Pubmed]
  29. Mechanics and multiple-particle tracking microheterogeneity of alpha-actinin-cross-linked actin filament networks. Tseng, Y., Wirtz, D. Biophys. J. (2001) [Pubmed]
  30. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Drenckhahn, D., Franke, R.P. Lab. Invest. (1988) [Pubmed]
  31. Localization of Z-protein in isolated Z-disk sheets of chicken leg muscle. Ohashi, K., Mikawa, T., Maruyama, K. J. Cell Biol. (1982) [Pubmed]
WikiGenes - Universities