The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

imd  -  immune deficiency

Drosophila melanogaster

Synonyms: BG5, CG5576, Dmel\CG5576, IMD, Imd, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of imd

 

Psychiatry related information on imd

 

High impact information on imd

 

Biological context of imd

  • The importance of these peptides in host defense is supported by the observation that flies deficient for the Toll or Immune deficiency (Imd) pathway, which affects AMP gene expression, are extremely susceptible to microbial infection [11].
  • Infection of Drosophila by Gram-negative bacteria triggers a signal transduction pathway (the IMD pathway) culminating in the expression of genes encoding antimicrobial peptides [12].
  • We determined the molecular structure of the Imd pathway transcriptional activator Relish (GmmRel), which shows high amino acid identity and structural similarity to its Drosophila homologue [13].
  • Here, we investigated the role of one of the two major pathways regulating innate immunity in invertebrates, the immunodeficiency (Imd) pathway, for Glossina morsitans morsitans's natural defence against Trypanosoma brucei spp. infections [13].
  • We report the molecular characterization of the immune deficiency (imd) gene, which controls antibacterial defense in Drosophila. imd encodes a protein with a death domain similar to that of mammalian RIP (receptor interacting protein), a protein that plays a role in both NF-kappaB activation and apoptosis [14].
 

Anatomical context of imd

  • Consistent with this, PGRP-LE binds to the diaminopimelic acid-type peptidoglycan, a cell-wall component of the bacteria capable of activating the imd pathway, but not to the lysine-type peptidoglycan [15].
  • In Drosophila, microbial infection activates an antimicrobial defense system involving the activation of proteolytic cascades in the hemolymph and intracellular signaling pathways, the immune deficiency (imd) and Toll pathways, in immune-responsive tissues [15].
  • Drosophila has evolved a potent immune system that is somewhat adapted to the nature of infections through the selective activation of either one of two NF-kappa B-like signalling pathways, the Toll and IMD (Immune deficiency) pathways [16].
  • Mice lacking the mel-18 gene show a posterior transformation of the axial skeleton, severe combined immunodeficiency, and a food-passing disturbance in the lower intestine due to hypertrophy of the smooth muscle layer [17].
  • In the mouse, more than 16 loci are associated with mutant phenotypes that include defective pigmentation, aberrant targeting of lysosomal enzymes, prolonged bleeding, and immunodeficiency, the result of defective biogenesis of cytoplasmic organelles: melanosomes, lysosomes, and various storage granules [18].
 

Associations of imd with chemical compounds

 

Other interactions of imd

  • We have expressed AMP genes via the control of the UAS/GAL4 system in imd; spätzle double mutants that do not express any known endogenous AMP gene [11].
  • In an effort to identify additional components that influence Rel-domain gene function we have conducted a search for immunodeficiency mutants in Drosophila [22].
  • We show that imd functions upstream of the DmIKK signalosome and the caspase DREDD in the control of antibacterial peptide genes [14].
  • We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background [23].
  • Here we present evidence that induction of metchnikowin gene expression can be mediated either by the TOLL pathway or by the imd gene product [24].
 

Analytical, diagnostic and therapeutic context of imd

  • After treatment with lysostaphin, which digests the cross-bridging peptides, S. aureus PGN weakly stimulated the IMD pathway, similar to M. luteus PGN [25].

References

  1. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., Ferrandon, D., Royet, J. Nature (2002) [Pubmed]
  2. Antimicrobial peptide defense in Drosophila. Meister, M., Lemaitre, B., Hoffmann, J.A. Bioessays (1997) [Pubmed]
  3. Intra- and extracellular recognition of pathogens and activation of innate immunity. Kurata, S. Yakugaku Zasshi (2006) [Pubmed]
  4. Drosophila immunity: two paths to NF-kappaB. Khush, R.S., Leulier, F., Lemaitre, B. Trends Immunol. (2001) [Pubmed]
  5. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J.E., MacKenzie, A., Korneluk, R.G. Nature (1996) [Pubmed]
  6. Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Ishikawa, H.O., Higashi, S., Ayukawa, T., Sasamura, T., Kitagawa, M., Harigaya, K., Aoki, K., Ishida, N., Sanai, Y., Matsuno, K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Toll-like receptors. Takeda, K., Kaisho, T., Akira, S. Annu. Rev. Immunol. (2003) [Pubmed]
  8. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Foley, E., O'Farrell, P.H. Genes Dev. (2003) [Pubmed]
  9. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Kaneko, T., Goldman, W.E., Mellroth, P., Steiner, H., Fukase, K., Kusumoto, S., Harley, W., Fox, A., Golenbock, D., Silverman, N. Immunity (2004) [Pubmed]
  10. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Naitza, S., Rossé, C., Kappler, C., Georgel, P., Belvin, M., Gubb, D., Camonis, J., Hoffmann, J.A., Reichhart, J.M. Immunity (2002) [Pubmed]
  11. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Tzou, P., Reichhart, J.M., Lemaitre, B. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  12. The role of ubiquitination in Drosophila innate immunity. Zhou, R., Silverman, N., Hong, M., Liao, D.S., Chung, Y., Chen, Z.J., Maniatis, T. J. Biol. Chem. (2005) [Pubmed]
  13. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Hu, C., Aksoy, S. Mol. Microbiol. (2006) [Pubmed]
  14. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Georgel, P., Naitza, S., Kappler, C., Ferrandon, D., Zachary, D., Swimmer, C., Kopczynski, C., Duyk, G., Reichhart, J.M., Hoffmann, J.A. Dev. Cell (2001) [Pubmed]
  15. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Takehana, A., Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T., Kurata, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  16. Sensing infection in Drosophila: Toll and beyond. Ferrandon, D., Imler, J.L., Hoffmann, J.A. Semin. Immunol. (2004) [Pubmed]
  17. The role of mel-18, a mammalian Polycomb group gene, during IL-7-dependent proliferation of lymphocyte precursors. Akasaka, T., Tsuji, K., Kawahira, H., Kanno, M., Harigaya, K., Hu, L., Ebihara, Y., Nakahata, T., Tetsu, O., Taniguchi, M., Koseki, H. Immunity (1997) [Pubmed]
  18. The mouse organellar biogenesis mutant buff results from a mutation in Vps33a, a homologue of yeast vps33 and Drosophila carnation. Suzuki, T., Oiso, N., Gautam, R., Novak, E.K., Panthier, J.J., Suprabha, P.G., Vida, T., Swank, R.T., Spritz, R.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  19. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. Takehana, A., Yano, T., Mita, S., Kotani, A., Oshima, Y., Kurata, S. EMBO J. (2004) [Pubmed]
  20. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S. Biochem. J. (2003) [Pubmed]
  21. The invertebrate growth factor/CECR1 subfamily of adenosine deaminase proteins. Charlab, R., Valenzuela, J.G., Andersen, J., Ribeiro, J.M. Gene (2001) [Pubmed]
  22. Characterization of an immunodeficiency mutant in Drosophila. Corbo, J.C., Levine, M. Mech. Dev. (1996) [Pubmed]
  23. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Lemaitre, B., Kromer-Metzger, E., Michaut, L., Nicolas, E., Meister, M., Georgel, P., Reichhart, J.M., Hoffmann, J.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. Levashina, E.A., Ohresser, S., Lemaitre, B., Imler, J.L. J. Mol. Biol. (1998) [Pubmed]
  25. Peptidoglycan recognition by the Drosophila Imd pathway. Kaneko, T., Golenbock, D., Silverman, N. J. Endotoxin Res. (2005) [Pubmed]
 
WikiGenes - Universities