The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

TTTY3B  -  testis-specific transcript, Y-linked 3B...

Homo sapiens

Synonyms: LNCRNA00122, NCRNA00122
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TTTY3B

  • Familial hyperinsulinism maps to chromosome 11p14-15.1, 30 cM centromeric to the insulin gene [1].
  • The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C [2].
  • RESULTS: Using FISH, we have identified patterns of DNA loss and gain of certain chromosome-specific centromeric markers in DCIS [3].
  • METHODS: Fifty-one sectors characterized by low- and high-grade dysplasia and early cancer were microdissected from 34 adenomas, and isolated epithelial nuclei were subjected to hybridization with probes to the telomeric and centromeric regions of chromosome 1 [4].
  • Both of these chromosomal abnormalities have breakpoints within the TCR J alpha locus at 14q11 and both have breakpoints which are proximal (i.e. on the centromeric side) to the immunoglobulin heavy chain JH region at 14q32 [5].
 

Psychiatry related information on TTTY3B

 

High impact information on TTTY3B

  • C-terminal PTEN mutants disrupt the association of PTEN with centromeres and cause centromeric instability [10].
  • PICH-positive threads connect sister kinetochores and are dependent on tension, sensitive to DNase, and exacerbated in response to premature loss of cohesins or inhibition of topoisomerase II, suggesting that they represent stretched centromeric chromatin [11].
  • We propose that in vertebrates, a cleavage-independent pathway removes cohesin from chromosome arms during prophase, whereas a separin-dependent pathway cleaves centromeric cohesin at the metaphase-anaphase transition [12].
  • Thus, we show M31 overexpression to have two contrasting effects which are dependent on chromosomal context: (i) it enhanced PEV in those lines with centromeric or pericentromeric transgene locations; and (ii) it suppressed PEV when the transgene was non-centromeric [13].
  • Together, our results suggest that the functional enhancer antagonizes gene silencing by preventing localization of a gene near centromeric heterochromatin [14].
 

Chemical compound and disease context of TTTY3B

 

Biological context of TTTY3B

  • Furthermore, the orientation of these gene fragments on their truncated chromosomes reveal that the healed chromosome originally associated with centromeric elements is mitotically stable and maintained [18].
  • To test the hypothesis that alpha-satellite DNA, the major centromeric satellite of primate chromosomes, is involved in centromere structure and/or function, human alpha-satellite DNA was introduced into African green monkey (AGM) cells [19].
  • Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21 [20].
  • The relationship between the kinetochore and the centromeric heterochromatin that surrounds it is unknown [21].
  • A characteristic arrangement of the repeat motifs in three separate spots, oriented transverse to the length axis of the metaphase chromosomes and bilaterally symmetric, indicates that only parts of the detected regions are involved in the centromeric region, joining the sister chromatids before anaphase [20].
 

Anatomical context of TTTY3B

  • The chromosome-4 breakpoints are clustered in a 70-kb region centromeric to the fibroblast growth factor receptor 3 gene (FGFR3), the apparent dysregulated oncogene [22].
  • The separation of V beta and C beta observed in somatic cell hybrids defined the orientation of the T cell receptor beta chain locus on chromosome 7 where the V beta genes are centromeric and the C beta genes are telomeric [23].
  • The kinetochore is a proteinaceous structure that assembles onto centromeric DNA and mediates chromosome attachment to microtubules during mitosis [24].
  • Pericentromeric targeting did not result from an interaction with the Mi-2 remodeling factor, as only a small percentage of Mi-2 localized to centromeric foci in 3T3 cells [25].
  • Furthermore, the serologic studies of HLA-deletion mutant cell lines demonstrate that there are two HLA regions centromeric to HLA-B controlling expression of Ia-like molecules: a region toward HLA-B that controls expression of HLA-DR, and a region toward GLO that controls expression of SB [26].
 

Associations of TTTY3B with chemical compounds

  • The C- and G-positive regions stained with distamycin A-DAPI, which is specific for the centromeric heterochromatin of chromosomes 1, 9, 15p, 16, and Y. DNA extracted from MeWo cells and digested with the restriction enzymes KpnL or Sau3A exhibited marked amplification of a 1.8-kilobase fragment [27].
  • These two sets encompass the 340 kb separating the C2 and tumour necrosis factor (TNF) alpha and beta genes, except for a 22 kb gap 108 kb centromeric to the TNF alpha gene [28].
  • The centromeric regions of the variant chromosome 6 and its homologue are not significantly elongated by adding 5-azacytidine to culture [29].
  • 5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes [30].
  • Deletion of the Dicer (dcr1+) gene caused slow growth, sensitivity to thiabendazole, lagging chromosomes during anaphase, and abrogated silencing of centromeric repeats [31].
 

Analytical, diagnostic and therapeutic context of TTTY3B

  • Similarly, the DR alpha-chain gene has been mapped to the short arm of chromosome 6 centromeric to the HLA-A, -B and -C loci by in situ hybridization experiments [32].
  • Here we report a high-resolution physical map of the euchromatic, centromeric and heterochromatic regions of the NRY and its construction by unusual methods, including genomic clone subtraction and dissection of sequence family variants [33].
  • Despite the complete absence of normal centromeric alpha-satellite DNA, human neocentromeres are able to form a primary constriction and assemble a functional kinetochore [34].
  • Southern blot analysis of NotI-digested, pulsed-field gel electrophoresis-separated DNA indicates the gelsolin gene is greater than or equal to 40 kb centromeric to ABL [35].
  • As measured by pulsed-field gel electrophoresis, the total D16Z2 array spans approximately 1,400-2,000 kb of centromeric DNA [36].

References

  1. Familial hyperinsulinism maps to chromosome 11p14-15.1, 30 cM centromeric to the insulin gene. Glaser, B., Chiu, K.C., Anker, R., Nestorowicz, A., Landau, H., Ben-Bassat, H., Shlomai, Z., Kaiser, N., Thornton, P.S., Stanley, C.A. Nat. Genet. (1994) [Pubmed]
  2. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Bitner-Glindzicz, M., Lindley, K.J., Rutland, P., Blaydon, D., Smith, V.V., Milla, P.J., Hussain, K., Furth-Lavi, J., Cosgrove, K.E., Shepherd, R.M., Barnes, P.D., O'Brien, R.E., Farndon, P.A., Sowden, J., Liu, X.Z., Scanlan, M.J., Malcolm, S., Dunne, M.J., Aynsley-Green, A., Glaser, B. Nat. Genet. (2000) [Pubmed]
  3. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. Murphy, D.S., Hoare, S.F., Going, J.J., Mallon, E.E., George, W.D., Kaye, S.B., Brown, R., Black, D.M., Keith, W.N. J. Natl. Cancer Inst. (1995) [Pubmed]
  4. Deletions at chromosome 1p by fluorescence in situ hybridization are an early event in human colorectal tumorigenesis. Di Vinci, A., Infusini, E., Peveri, C., Risio, M., Rossini, F.P., Giaretti, W. Gastroenterology (1996) [Pubmed]
  5. Human T-cell tumours containing chromosome 14 inversion or translocation with breakpoints proximal to immunoglobulin joining regions at 14q32. Mengle-Gaw, L., Willard, H.F., Smith, C.I., Hammarström, L., Fischer, P., Sherrington, P., Lucas, G., Thompson, P.W., Baer, R., Rabbitts, T.H. EMBO J. (1987) [Pubmed]
  6. Molecular genetic analysis of the 3p- syndrome. Phipps, M.E., Latif, F., Prowse, A., Payne, S.J., Dietz-Band, J., Leversha, M., Affara, N.A., Moore, A.T., Tolmie, J., Schinzel, A. Hum. Mol. Genet. (1994) [Pubmed]
  7. Replication timing of human telomeric DNA and other repetitive sequences analyzed by fluorescence in situ hybridization and flow cytometry. Hultdin, M., Grönlund, E., Norrback, K.F., Just, T., Taneja, K., Roos, G. Exp. Cell Res. (2001) [Pubmed]
  8. Localization of the D5 dopamine receptor gene to human chromosome 4p15.1-p15.3, centromeric to the Huntington's disease locus. Eubanks, J.H., Altherr, M., Wagner-McPherson, C., McPherson, J.D., Wasmuth, J.J., Evans, G.A. Genomics (1992) [Pubmed]
  9. Molecular-cytogenetic investigation of skewed chromosome X inactivation in Rett syndrome. Yurov, Y.B., Vorsanova, S.G., Kolotii, A.D., Iourov, I.Y. Brain Dev. (2001) [Pubmed]
  10. Essential Role for Nuclear PTEN in Maintaining Chromosomal Integrity. Shen, W.H., Balajee, A.S., Wang, J., Wu, H., Eng, C., Pandolfi, P.P., Yin, Y. Cell (2007) [Pubmed]
  11. PICH, a Centromere-Associated SNF2 Family ATPase, Is Regulated by Plk1 and Required for the Spindle Checkpoint. Baumann, C., K??rner, R., Hofmann, K., Nigg, E.A. Cell (2007) [Pubmed]
  12. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Waizenegger, I.C., Hauf, S., Meinke, A., Peters, J.M. Cell (2000) [Pubmed]
  13. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Festenstein, R., Sharghi-Namini, S., Fox, M., Roderick, K., Tolaini, M., Norton, T., Saveliev, A., Kioussis, D., Singh, P. Nat. Genet. (1999) [Pubmed]
  14. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Francastel, C., Walters, M.C., Groudine, M., Martin, D.I. Cell (1999) [Pubmed]
  15. Detection of numerical chromosomal aberrations in paraffin-embedded malignant pleural mesothelioma by non-isotopic in situ hybridization. Segers, K., Ramael, M., Singh, S.K., Van Daele, A., Weyler, J., Van Marck, E. J. Pathol. (1995) [Pubmed]
  16. Histopathologic analysis of chromosome aneuploidy in ductal carcinoma in situ. Visscher, D., Jimenez, R.E., Grayson, M., Mendelin, J., Wallis, T. Hum. Pathol. (2000) [Pubmed]
  17. Chromosomal numerical aberrations are frequent in oesophageal and gastric adenocarcinomas: a study using in-situ hybridization. Beuzen, F., Dubois, S., Fléjou, J.F. Histopathology (2000) [Pubmed]
  18. Large deletions result from breakage and healing of P. falciparum chromosomes. Pologe, L.G., Ravetch, J.V. Cell (1988) [Pubmed]
  19. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Haaf, T., Warburton, P.E., Willard, H.F. Cell (1992) [Pubmed]
  20. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nilsson, M., Krejci, K., Koch, J., Kwiatkowski, M., Gustavsson, P., Landegren, U. Nat. Genet. (1997) [Pubmed]
  21. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Bernat, R.L., Delannoy, M.R., Rothfield, N.F., Earnshaw, W.C. Cell (1991) [Pubmed]
  22. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Chesi, M., Nardini, E., Brents, L.A., Schröck, E., Ried, T., Kuehl, W.M., Bergsagel, P.L. Nat. Genet. (1997) [Pubmed]
  23. Molecular analysis of a t(7;14)(q35;q32) chromosome translocation in a T cell leukemia of a patient with ataxia telangiectasia. Russo, G., Isobe, M., Pegoraro, L., Finan, J., Nowell, P.C., Croce, C.M. Cell (1988) [Pubmed]
  24. Kinetochore-spindle microtubule interactions during mitosis. Kline-Smith, S.L., Sandall, S., Desai, A. Curr. Opin. Cell Biol. (2005) [Pubmed]
  25. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Cobb, B.S., Morales-Alcelay, S., Kleiger, G., Brown, K.E., Fisher, A.G., Smale, S.T. Genes Dev. (2000) [Pubmed]
  26. Serologic identification of the human secondary B cell antigens. Correlations between function, genetics, and structure. Shaw, S., DeMars, R., Schlossman, S.F., Smith, P.L., Lampson, L.A., Nadler, L.M. J. Exp. Med. (1982) [Pubmed]
  27. Amplified KpnL repetitive DNA sequences in homogeneously staining regions of a human melanoma cell line. Simmons, M.C., Maxwell, J., Haliotis, T., Higgins, M.J., Roder, J.C., White, B.N., Holden, J.J. J. Natl. Cancer Inst. (1984) [Pubmed]
  28. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III region. Sargent, C.A., Dunham, I., Campbell, R.D. EMBO J. (1989) [Pubmed]
  29. Molecular cytogenetic evidence for amplification of chromosome-specific alphoid sequences at enlarged C-bands on chromosome 6. Jabs, E.W., Carpenter, N. Am. J. Hum. Genet. (1988) [Pubmed]
  30. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Matsuoka, S., Thompson, J.S., Edwards, M.C., Bartletta, J.M., Grundy, P., Kalikin, L.M., Harper, J.W., Elledge, S.J., Feinberg, A.P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Provost, P., Silverstein, R.A., Dishart, D., Walfridsson, J., Djupedal, I., Kniola, B., Wright, A., Samuelsson, B., Radmark, O., Ekwall, K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  32. A minimum of four human class II alpha-chain genes are encoded in the HLA region of chromosome 6. Auffray, C., Kuo, J., DeMars, R., Strominger, J.L. Nature (1983) [Pubmed]
  33. A physical map of the human Y chromosome. Tilford, C.A., Kuroda-Kawaguchi, T., Skaletsky, H., Rozen, S., Brown, L.G., Rosenberg, M., McPherson, J.D., Wylie, K., Sekhon, M., Kucaba, T.A., Waterston, R.H., Page, D.C. Nature (2001) [Pubmed]
  34. Neocentromeres: role in human disease, evolution, and centromere study. Amor, D.J., Choo, K.H. Am. J. Hum. Genet. (2002) [Pubmed]
  35. Localization of gelsolin proximal to ABL on chromosome 9. Kwiatkowski, D.J., Westbrook, C.A., Bruns, G.A., Morton, C.C. Am. J. Hum. Genet. (1988) [Pubmed]
  36. Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16. Greig, G.M., England, S.B., Bedford, H.M., Willard, H.F. Am. J. Hum. Genet. (1989) [Pubmed]
 
WikiGenes - Universities