The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

QRICH1  -  glutamine-rich 1

Homo sapiens

Synonyms: FLJ20259, Glutamine-rich protein 1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of QRICH1

  • Furthermore, the prion conformation of the yeast protein Rnq1 and the level of expression of a suite of other glutamine-rich proteins profoundly affect polyQ toxicity [1].
  • This domain is proline and glutamine-rich and is highly homologous (66%) to a portion of vHNF1, an evolutionarily related gene first identified in dedifferentiated hepatoma cells [2].
  • We report here the identification of a novel cellular protein that interacts with NS1 from parvovirus H-1 and which we termed SGT, for small glutamine-rich tetratricopeptide repeat (TPR)-containing protein [3].
  • GBF, which mainly consists of dietary fiber and glutamine-rich protein, is a prebiotic foodstuff for ulcerative colitis [4].
  • The genotypes of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein are frequently used to distinguish recrudescence from reinfection when parasitaemia reappears after antimalarial drug treatment [5].

High impact information on QRICH1


Chemical compound and disease context of QRICH1


Biological context of QRICH1

  • Moreover, in transient transfection assays, PU.1 alone activated reporter constructs containing the JB cis-element, and the activation was shown to be dependent on a glutamine-rich sequence in the amino-terminal portion of PU [13].
  • We also find that the amino-terminal glutamine-rich domains of hGrg and TLE1 are sufficient to mediate dimerization of the two Groucho family proteins [14].
  • Unlike in Saccharomyces cerevisiae, the glutamine-rich activation domains of Sp1, Oct1 and Oct2 activate transcription in S. pombe when tested in a proximal TATA box context [15].
  • In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present [16].
  • In human cells, promoter-proximally bound glutamine-rich activation domains activate transcription poorly in the absence of acidic type activators bound at distal enhancers, but synergistically stimulate transcription with these remote activators [17].

Anatomical context of QRICH1


Associations of QRICH1 with chemical compounds

  • Here, we use fluorescence imaging of living cells to show that polyglutamine protein aggregates are dynamic structures in which glutamine-rich proteins are tightly associated, but which exhibit distinct biophysical interactions [23].
  • This novel protein contains acidic, basic and proline- + glutamine-rich regions, as well as two autonomous DNA-binding domains, one NH2-terminal and the other COOH-terminal, that discriminate with high resolution between the three GT motifs [24].
  • AF4 is a serine- and proline-rich putative transcription factor with a glutamine-rich carboxyl terminus [25].
  • Sp1 is composed of several functional domains, such as the inhibitory domain (ID), two serine/threonine-rich domains, two glutamine-rich domains, three C2H2-type zinc finger DNA binding domains (ZFDBD), and a C-terminal D domain [26].
  • The avenin genes encode glutamine-rich, lysine-poor proteins that vary in length due to differences in the number of peptide repeats [27].

Physical interactions of QRICH1

  • No sequence-specific DNA binding activity was detected by polymerase chain reaction-DNA binding site selection nor was the glutamine-rich Grg protein capable of acting as an activation domain in an in vivo transactivation assay [28].

Other interactions of QRICH1

  • The central domain of hTAFII130 contains four glutamine-rich regions, designated Q1 to Q4, that are involved in interactions with the transcriptional activator Sp1 [29].
  • Finally, by using GAL4 fusion proteins we show that the glutamine-rich sequences in the transactivation domain of Sp1 contribute to the cooperativity with Smad proteins [30].
  • The dissociation constant (Kd) of the Myb motif plus the glutamine-rich domain of NgTRF1 to the two-telomeric repeat sequence was evaluated to be 4.5 +/- 0.2 x 10-9 m, which is comparable to that of the Myb domain of human TRF1 [31].
  • Analysis of POLG in other primates indicates that the repeat has expanded from a shorter, glutamine-rich sequence, present in the common ancestor of Old and New World monkeys [32].
  • The C-terminal third of RFXAP, which contained an extensive glutamine-rich tract, could rescue HLA-DR, but not HLA-DQ or HLA-DP expression in a BLS cell line [33].

Analytical, diagnostic and therapeutic context of QRICH1


  1. A network of protein interactions determines polyglutamine toxicity. Duennwald, M.L., Jagadish, S., Giorgini, F., Muchowski, P.J., Lindquist, S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  2. The transcription factor HNF1 acts with C/EBP alpha to synergistically activate the human albumin promoter through a novel domain. Wu, K.J., Wilson, D.R., Shih, C., Darlington, G.J. J. Biol. Chem. (1994) [Pubmed]
  3. Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. Cziepluch, C., Kordes, E., Poirey, R., Grewenig, A., Rommelaere, J., Jauniaux, J.C. J. Virol. (1998) [Pubmed]
  4. Modification of intestinal flora in the treatment of inflammatory bowel disease. Kanauchi, O., Mitsuyama, K., Araki, Y., Andoh, A. Curr. Pharm. Des. (2003) [Pubmed]
  5. Genetic diversity of Plasmodium falciparum parasites from Kenya is not affected by antifolate drug selection. Nzila, A.M., Mberu, E.K., Nduati, E., Ross, A., Watkins, W.M., Sibley, C.H. Int. J. Parasitol. (2002) [Pubmed]
  6. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Tian, Q., Streuli, M., Saito, H., Schlossman, S.F., Anderson, P. Cell (1991) [Pubmed]
  7. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Courey, A.J., Holtzman, D.A., Jackson, S.P., Tjian, R. Cell (1989) [Pubmed]
  8. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Mermod, N., O'Neill, E.A., Kelly, T.J., Tjian, R. Cell (1989) [Pubmed]
  9. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Courey, A.J., Tjian, R. Cell (1988) [Pubmed]
  10. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Gerber, H.P., Seipel, K., Georgiev, O., Höfferer, M., Hug, M., Rusconi, S., Schaffner, W. Science (1994) [Pubmed]
  11. Changes in the nutritional state and immune-serological parameters of esophagectomized patients fed jejunaly with glutamine-poor and glutamine-rich nutriments. Hallay, J., Kovács, G., Kiss Sz, S., Farkas, M., Lakos, G., Sipka, S., Bodolay, E., Sápy, P. Hepatogastroenterology (2002) [Pubmed]
  12. Early jejunal nutrition and changes in the immunological parameters of patients with acute pancreatitis. Hallay, J., Kovács, G., Szatmári, K., Bakó, A., Szentkereszty, Z., Lakos, G., Sipka, S., Sápy, P. Hepatogastroenterology (2001) [Pubmed]
  13. Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Shin, M.K., Koshland, M.E. Genes Dev. (1993) [Pubmed]
  14. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Ren, B., Chee, K.J., Kim, T.H., Maniatis, T. Genes Dev. (1999) [Pubmed]
  15. Three classes of mammalian transcription activation domain stimulate transcription in Schizosaccharomyces pombe. Remacle, J.E., Albrecht, G., Brys, R., Braus, G.H., Huylebroeck, D. EMBO J. (1997) [Pubmed]
  16. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. Kiledjian, M., Dreyfuss, G. EMBO J. (1992) [Pubmed]
  17. Conservation of glutamine-rich transactivation function between yeast and humans. Escher, D., Bodmer-Glavas, M., Barberis, A., Schaffner, W. Mol. Cell. Biol. (2000) [Pubmed]
  18. Normal myeloid development requires both the glutamine-rich transactivation domain and the PEST region of transcription factor PU.1 but not the potent acidic transactivation domain. Fisher, R.C., Olson, M.C., Pongubala, J.M., Perkel, J.M., Atchison, M.L., Scott, E.W., Simon, M.C. Mol. Cell. Biol. (1998) [Pubmed]
  19. Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. Benuck, M.L., Li, Z., Childs, G. J. Biol. Chem. (1999) [Pubmed]
  20. Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. Xiao, H., Jeang, K.T. J. Biol. Chem. (1998) [Pubmed]
  21. A novel glutamine-rich putative transcriptional adaptor protein (TIG-1), preferentially expressed in placental and bone-marrow tissues. Abraham, S., Solomon, W.B. Gene (2000) [Pubmed]
  22. Effect of an enterally administered glutamine-rich protein on the catabolic response to a zymosan challenge in rats. Rooyackers, O.E., Soeters, P.B., Saris, W.H., Wagenmakers, A.J. Clinical nutrition (Edinburgh, Scotland) (1995) [Pubmed]
  23. Polyglutamine protein aggregates are dynamic. Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P., Morimoto, R.I. Nat. Cell Biol. (2002) [Pubmed]
  24. GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. Dehesh, K., Hung, H., Tepperman, J.M., Quail, P.H. EMBO J. (1992) [Pubmed]
  25. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Domer, P.H., Fakharzadeh, S.S., Chen, C.S., Jockel, J., Johansen, L., Silverman, G.A., Kersey, J.H., Korsmeyer, S.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK. Lee, J.A., Suh, D.C., Kang, J.E., Kim, M.H., Park, H., Lee, M.N., Kim, J.M., Jeon, B.N., Roh, H.E., Yu, M.Y., Choi, K.Y., Kim, K.Y., Hur, M.W. J. Biol. Chem. (2005) [Pubmed]
  27. Analysis of seed storage protein genes of oats. Shotwell, M.A., Boyer, S.K., Chesnut, R.S., Larkins, B.A. J. Biol. Chem. (1990) [Pubmed]
  28. Possible involvement of the mouse Grg protein in transcription. Mallo, M., Lieberman, P.M., Gridley, T. Cell. Mol. Biol. Res. (1995) [Pubmed]
  29. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Saluja, D., Vassallo, M.F., Tanese, N. Mol. Cell. Biol. (1998) [Pubmed]
  30. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. Pardali, K., Kurisaki, A., Morén, A., ten Dijke, P., Kardassis, D., Moustakas, A. J. Biol. Chem. (2000) [Pubmed]
  31. Expression of the telomeric repeat binding factor gene NgTRF1 is closely coordinated with the cell division program in tobacco BY-2 suspension culture cells. Yang, S.W., Kim, D.H., Lee, J.J., Chun, Y.J., Lee, J.H., Kim, Y.J., Chung, I.K., Kim, W.T. J. Biol. Chem. (2003) [Pubmed]
  32. A prevalent POLG CAG microsatellite length allele in humans and African great apes. Rovio, A.T., Abel, J., Ahola, A.L., Andres, A.M., Bertranpetit, J., Blancher, A., Bontrop, R.E., Chemnick, L.G., Cooke, H.J., Cummins, J.M., Davis, H.A., Elliott, D.J., Fritsche, E., Hargreave, T.B., Hoffman, S.M., Jequier, A.M., Kao, S.H., Kim, H.S., Marchington, D.R., Mehmet, D., Otting, N., Poulton, J., Ryder, O.A., Schuppe, H.C., Takenaka, O., Wei, Y.H., Wichmann, L., Jacobs, H.T. Mamm. Genome (2004) [Pubmed]
  33. Conserved residues of the bare lymphocyte syndrome transcription factor RFXAP determine coordinate MHC class II expression. Long, A.B., Ferguson, A.M., Majumder, P., Nagarajan, U.M., Boss, J.M. Mol. Immunol. (2006) [Pubmed]
  34. The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription. Tanaka, M., Clouston, W.M., Herr, W. Mol. Cell. Biol. (1994) [Pubmed]
  35. Genetic dissection of hTAF(II)130 defines a hydrophobic surface required for interaction with glutamine-rich activators. Rojo-Niersbach, E., Furukawa, T., Tanese, N. J. Biol. Chem. (1999) [Pubmed]
  36. Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Farnert, A., Snounou, G., Rooth, I., Bjorkman, A. Am. J. Trop. Med. Hyg. (1997) [Pubmed]
  37. A comparison of parenteral and enteral feeding in neonatal piglets, including an assessment of the utilization of a glutamine-rich, pediatric elemental diet. Bertolo, R.F., Pencharz, P.B., Ball, R.O. JPEN. Journal of parenteral and enteral nutrition. (1999) [Pubmed]
WikiGenes - Universities