The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hypocapnia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hypocapnia

 

Psychiatry related information on Hypocapnia

  • 3. During wakefulness, steady-state hypocapnia (partial pressure of CO2, PCO2 = 30 mmHg) abolished inspiratory EMG activity, resulting in apnoea, but the expiratory muscle became tonically active [6].
  • These results suggest that ketamine may be beneficial for preventing postoperative brain dysfunction, especially in patients with cerebrovascular diseases and/or dementia induced by hypocapnia, which is likely to occur in the mechanical ventilation used during surgery [7].
 

High impact information on Hypocapnia

  • Chronic hypocapnia (PaCO2 = 26 mmHg, pH = 7.54) reduced proximal HCO3 reabsorption, but this effect was reversed when FLHCO3 was increased to levels comparable to euvolemic normocapneic rats [8].
  • Thus, in both normal and HCl-fed animals, the renal response to chronic hypocapnia causes plasma [HCO3] to fall by approximately 0.5 meq/liter for each millimeter of Hg reduction in CO2 tension [9].
  • Treatment with MSO in hyperammonemic rats did not fully restore the response to hypocapnia but prevented the paradoxical increase in CBF (from 80 +/- 8 to 80 +/- 8 ml/min per 100 g) [10].
  • Superoxide dismutase alone or catalase alone reduced the dilation during application of 200 micrograms/ml of arachidonate for 15 minutes; they also completely prevented the residual dilation seen 1 hour after washout, as well as the reduction in the vasoconstrictive effects of arterial hypocapnia observed at this time [11].
  • Pial arterioles from vehicle-treated animals displayed sustained dilation, reduced responsiveness to the vasoconstrictor effect of arterial hypocapnia, and a high density of endothelial lesions [12].
 

Chemical compound and disease context of Hypocapnia

  • It is generally believed that the reduction in plasma [HCO3] characteristic of chronic hypocapnia results from renal homeostatic mechanisms designed to minimize the alkalemia produced by.the hypocapneic state [9].
  • Both types of abnormal impulse generation were increased by hypocalcemia induced by disodium edetate infusion, hypocapnia produced by hyperventilation, and, to a lesser extent, alkalosis secondary to sodium bicarbonate administration [13].
  • The dynamic changes are similar to those previously reported for baseline CBF reductions induced by hypocapnia and hyperoxia [14].
  • A patient was encountered in whom clinically significant spurious hypocapnia and hypobicarbonatemia were diagnosed resulting from the dilutional effect of excessive amounts of sodium heparin solution in the blood sample [15].
  • When halothane or enflurane were used for anesthesia, the CSF pressure-lowering effect of hypocapnia was not sustained [16].
 

Biological context of Hypocapnia

 

Anatomical context of Hypocapnia

 

Gene context of Hypocapnia

  • Compulsory hyperventilation and hypocapnia of patients with Leigh syndrome associated with SURF1 gene mutations as a cause of low serum bicarbonates [27].
  • Abolition of the phosphaturic response to parathormone (PTH) was recently demonstrated in acute experimental hypocapnia [28].
  • In hypocapnia, IAP rCBF (n = 4) decreased 34% but HIPDm rCBF (n = 4) did not change [29].
  • The slopes of the linear relationships between PET,CO2 and CFV were computed separately for hyper- and hypocapnia during the LBNP and no-LBNP conditions [30].
  • During hypoxia, both high-altitude groups showed responses to hypocapnia that were significantly smaller at Lima than at CP (HA, 2.17 +/- 0.23 and 3.29 +/- 0.34% mmHg(-1), P < 0.05; CMS, 1.87 +/- 0.16 and 3.23 +/- 0.24% mmHg(-1); P < 0.01) [31].
 

Analytical, diagnostic and therapeutic context of Hypocapnia

References

  1. A comparison of sodium bicarbonate and sodium lactate infusion in the induction of panic attacks. Gorman, J.M., Battista, D., Goetz, R.R., Dillon, D.J., Liebowitz, M.R., Fyer, A.J., Kahn, J.P., Sandberg, D., Klein, D.F. Arch. Gen. Psychiatry (1989) [Pubmed]
  2. Primary pulmonary hypertension. A national prospective study. Rich, S., Dantzker, D.R., Ayres, S.M., Bergofsky, E.H., Brundage, B.H., Detre, K.M., Fishman, A.P., Goldring, R.M., Groves, B.M., Koerner, S.K. Ann. Intern. Med. (1987) [Pubmed]
  3. Positron imaging of cerebral blood flow during continuous inhalation of C15O2. Ackerman, R.H., Subramanyam, R., Correia, J.A., Alpert, N.M., Taveras, J.M. Stroke (1980) [Pubmed]
  4. CO2 responses of the cerebral circulation during drug-induced hypotension in the cat. Gregory, P., Ishikawa, T., McDowall, D.G. J. Cereb. Blood Flow Metab. (1981) [Pubmed]
  5. Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Doerr, C.H., Gajic, O., Berrios, J.C., Caples, S., Abdel, M., Lymp, J.F., Hubmayr, R.D. Am. J. Respir. Crit. Care Med. (2005) [Pubmed]
  6. Effects of sleep on the tonic drive to respiratory muscle and the threshold for rhythm generation in the dog. Horner, R.L., Kozar, L.F., Kimoff, R.J., Phillipson, E.A. J. Physiol. (Lond.) (1994) [Pubmed]
  7. Ketamine attenuates hypocapnia-induced neuronal damage in the caudoputamen in a rat model of chronic cerebral hypoperfusion. Miyamoto, E., Nakao, S., Tomimoto, H., Wakita, H., Yamada, M., Masuzawa, M., Takahira, K., Sakamoto, S., Shingu, K. Neurosci. Lett. (2004) [Pubmed]
  8. Delivery dependence of early proximal bicarbonate reabsorption in the rat in respiratory acidosis and alkalosis. Santella, R.N., Maddox, D.A., Gennari, F.J. J. Clin. Invest. (1991) [Pubmed]
  9. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+). Cohen, J.J., Madias, N.E., Wolf, C.J., Schwartz, W.B. J. Clin. Invest. (1976) [Pubmed]
  10. Restoration of cerebrovascular CO2 responsivity by glutamine synthesis inhibition in hyperammonemic rats. Takahashi, H., Koehler, R.C., Hirata, T., Brusilow, S.W., Traystman, R.J. Circ. Res. (1992) [Pubmed]
  11. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Kontos, H.A., Wei, E.P., Povlishock, J.T., Christman, C.W. Circ. Res. (1984) [Pubmed]
  12. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Wei, E.P., Kontos, H.A., Dietrich, W.D., Povlishock, J.T., Ellis, E.F. Circ. Res. (1981) [Pubmed]
  13. Ectopic impulse generation in demyelinated axons: effects of PaCO2, pH, and disodium edetate. Burchiel, K.J. Ann. Neurol. (1981) [Pubmed]
  14. Caffeine alters the temporal dynamics of the visual BOLD response. Liu, T.T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G.T., Dubowitz, D.J., Buxton, R.B. Neuroimage (2004) [Pubmed]
  15. Spurious assessment of acid-base status due to dilutional effect of heparin. Bloom, S.A., Canzanello, V.J., Strom, J.A., Madias, N.E. Am. J. Med. (1985) [Pubmed]
  16. Reduction of cerebrospinal fluid pressure by hypocapnia: changes in cerebral blood volume, cerebrospinal fluid volume and brain tissue water and electrolytes. II. Effects of anesthetics. Artru, A.A. J. Cereb. Blood Flow Metab. (1988) [Pubmed]
  17. Hypocapnia and cerebral hypoperfusion in orthostatic intolerance. Novak, V., Spies, J.M., Novak, P., McPhee, B.R., Rummans, T.A., Low, P.A. Stroke (1998) [Pubmed]
  18. Cerebral blood flow responses to hypocapnia during hypotension. Artru, A.A., Colley, P.S. Stroke (1984) [Pubmed]
  19. Cerebral blood volume is increased in dogs during administration of nitrous oxide or isoflurane. Archer, D.P., Labrecque, P., Tyler, J.L., Meyer, E., Trop, D. Anesthesiology (1987) [Pubmed]
  20. Effect of artificial respiratory volume on the cardiovascular responses to an alpha 1- and an alpha 2-adrenoceptor agonist in the air-ventilated pithed rat. MacLean, M.R., Hiley, C.R. Br. J. Pharmacol. (1988) [Pubmed]
  21. Tonic respiratory drive in the absence of rhythm generation in the conscious dog. Horner, R.L., Kozar, L.F., Phillipson, E.A. J. Appl. Physiol. (1994) [Pubmed]
  22. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Ringelstein, E.B., Sievers, C., Ecker, S., Schneider, P.A., Otis, S.M. Stroke (1988) [Pubmed]
  23. Mechanisms of the cerebrovascular response to apnoea in humans. Przybyłowski, T., Bangash, M.F., Reichmuth, K., Morgan, B.J., Skatrud, J.B., Dempsey, J.A. J. Physiol. (Lond.) (2003) [Pubmed]
  24. Carbachol, norepinephrine, and hypocapnia stimulate phosphatidylinositol turnover in rat tracheal slices. Shibata, O., Makita, T., Tsujita, T., Tomiyasu, S., Fujigaki, T., Nakamura, H., Sumikawa, K. Anesthesiology (1995) [Pubmed]
  25. Decreased cerebrospinal fluid pressure with mannitol and hypocapnia. Shapira, Y., Artru, A.A. Anesth. Analg. (1996) [Pubmed]
  26. Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. Smith, C.A., Saupe, K.W., Henderson, K.S., Dempsey, J.A. J. Appl. Physiol. (1995) [Pubmed]
  27. Compulsory hyperventilation and hypocapnia of patients with Leigh syndrome associated with SURF1 gene mutations as a cause of low serum bicarbonates. Pronicka, E., Piekutowska-Abramczuk, D.H., Popowska, E., Pronicki, M., Karczmarewicz, E., Sykut-Cegielskâ, Y., Taybert, J. J. Inherit. Metab. Dis. (2001) [Pubmed]
  28. Abolished phosphaturic response to parathormone in adult patients with Fahr disease and its restoration after propranolol administration. Pronicka, E., Kulczycki, J., Rowińska, E., Kuran, W. J. Neurol. (1988) [Pubmed]
  29. Comparison of [125I]HIPDm and [125I]iodoantipyrine in quantifying regional cerebral blood flow in rats. Albright, R.E., Friedman, A.H., Fram, E.K., Harbury, O.L., Molter, B.A., Skatoff, J.H., Harris, C.C., Coleman, R.E., Drayer, B.P. Stroke (1988) [Pubmed]
  30. Baroreflex-induced sympathetic activation does not alter cerebrovascular CO2 responsiveness in humans. LeMarbre, G., Stauber, S., Khayat, R.N., Puleo, D.S., Skatrud, J.B., Morgan, B.J. J. Physiol. (Lond.) (2003) [Pubmed]
  31. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers. Norcliffe, L.J., Rivera-Ch, M., Claydon, V.E., Moore, J.P., Leon-Velarde, F., Appenzeller, O., Hainsworth, R. J. Physiol. (Lond.) (2005) [Pubmed]
  32. Cerebral vasoconstriction in response to hypocapnia is maintained after ischemia/reperfusion injury in newborn pigs. Mirro, R., Lowery-Smith, L., Armstead, W.M., Shibata, M., Zuckerman, S.L., Leffler, C.W. Stroke (1992) [Pubmed]
  33. Cerebral metabolism and EEG during combination of hypocapnia and isoflurane-induced hypotension in dogs. Artru, A.A. Anesthesiology (1986) [Pubmed]
  34. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Collins, M.P., Lorenz, J.M., Jetton, J.R., Paneth, N. Pediatr. Res. (2001) [Pubmed]
  35. Light/dye microvascular injury eliminates pial arteriolar dilation in hypotensive piglets. Eidson, T.H., Edrington, J.L., Albuquerque, M.L., Zuckerman, S.L., Leffler, C.W. Pediatr. Res. (1995) [Pubmed]
  36. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Eriksson, L.I., Sato, M., Severinghaus, J.W. Anesthesiology (1993) [Pubmed]
 
WikiGenes - Universities