The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tooth Germ

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tooth Germ

 

High impact information on Tooth Germ

  • We show that activin betaA is expressed in presumptive tooth-germ mesenchyme and is thus a candidate for a signaling molecule in tooth development [6].
  • Although development of tooth germs of uninjected op/op mice was impaired, rhM-CSF injection restored the development of molar tooth germs and led to tooth eruption as a consequence of the recovery of bone-resorbing activity [7].
  • A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ [8].
  • To further test this hypothesis, Msx1 mutant tooth germs were first cultured with either BMP4 or with various FGFs for two days in vitro and then grown under the kidney capsule of syngeneic mice to permit completion of organogenesis and terminal differentiation [9].
  • By adding a soluble form of Edar to tooth germs, we were able to mimic the tabby enamel knot phenotype, demonstrating the involvement of endogenous Eda in tooth development [10].
 

Chemical compound and disease context of Tooth Germ

 

Biological context of Tooth Germ

 

Anatomical context of Tooth Germ

  • Using the more powerful kidney capsule grafting procedure, we now show that when added to explanted Msx1-deficient tooth germs prior to grafting, BMP4 rescues Msx1 mutant tooth germs all the way to definitive stages of enamel and dentin formation [9].
  • The findings of a BrdU incorporation experiment suggested that the imbalance between the proliferation activity of the inner enamel epithelium and that of the dental papilla caused by HGF translation arrest results in the abnormal structure of the tooth germ [16].
  • After addition of ethanol to the ordinary fodder of pregnant mini-pigs, ultrastructural changes were found in secretory ameloblasts from tooth germs of their mid-term fetuses [17].
  • No alpha 1 type IV collagen chain mRNA was detected in tooth germ epithelium or dental papilla [18].
  • Treatment of the explants with bisphosphonate or vitamin K2, inhibitors of the differentiation of osteoclasts, induced the invasion by bone into the tooth germs as observed in the antisense ODN-treated explants [19].
 

Associations of Tooth Germ with chemical compounds

 

Gene context of Tooth Germ

  • In turn, we show that addition of BMP4 to Msx1 deficient tooth germs bypasses the requirement for Msx1 and rescues epithelial development from the bud stage to the E14.5 cap stage [25].
  • Lama5-null mice develop a small tooth germ with defective cusp formation and have reduced proliferation of dental epithelium [26].
  • To test the hypothesis that LEF1 signaling regulates the fate of the dental epithelial and the CNC-derived mesenchymal cells during tooth morphogenesis, we investigated and compared the cellular migration, proliferation, and apoptotic activity within the tooth germ between the wild-type and Lef1 null mutant mice [27].
  • We examined the effects of PTHrP, TGF-beta, and EGF, which are all secreted by the tooth germ, on tartrate-resistant acid-phosphatase-positive (TRAP+) cell formation using co-cultures of human PDL cells and mouse spleen cells [28].
  • Although Rankl expression was not detected in tooth epithelium or mesenchyme, it was expressed in pre-osteogenic mesenchymal cells close to developing tooth germs [29].
 

Analytical, diagnostic and therapeutic context of Tooth Germ

References

  1. Immunohistochemical detection of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in ameloblastomas. Kumamoto, H., Yamauchi, K., Yoshida, M., Ooya, K. J. Oral Pathol. Med. (2003) [Pubmed]
  2. Expression of bone morphogenetic proteins and their associated molecules in ameloblastomas and adenomatoid odontogenic tumors. Kumamoto, H., Ooya, K. Oral diseases. (2006) [Pubmed]
  3. Three-dimensional ultrasound evaluation of fetal tooth germs. Ulm, M.R., Kratochwil, A., Ulm, B., Solar, P., Aro, G., Bernaschek, G. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. (1998) [Pubmed]
  4. Disturbed tooth eruption in osteopetrotic (op/op) mice: histopathogenesis of tooth malformation and odontomas. Ida-Yonemochi, H., Noda, T., Shimokawa, H., Saku, T. J. Oral Pathol. Med. (2002) [Pubmed]
  5. Antagonism of fluoride toxicity by high levels of calcium but not of inorganic phosphate during secretory amelogenesis in the hamster tooth germ in vitro. Bronckers, A.L., Bervoets, T.J., Lyaruu, D.M., Wöltgens, J.H. Arch. Oral Biol. (1989) [Pubmed]
  6. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Ferguson, C.A., Tucker, A.S., Christensen, L., Lau, A.L., Matzuk, M.M., Sharpe, P.T. Genes Dev. (1998) [Pubmed]
  7. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. Kodama, H., Yamasaki, A., Nose, M., Niida, S., Ohgame, Y., Abe, M., Kumegawa, M., Suda, T. J. Exp. Med. (1991) [Pubmed]
  8. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Zhang, Y., Zhang, Z., Zhao, X., Yu, X., Hu, Y., Geronimo, B., Fromm, S.H., Chen, Y.P. Development (2000) [Pubmed]
  9. BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Bei, M., Kratochwil, K., Maas, R.L. Development (2000) [Pubmed]
  10. Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Tucker, A.S., Headon, D.J., Schneider, P., Ferguson, B.M., Overbeek, P., Tschopp, J., Sharpe, P.T. Development (2000) [Pubmed]
  11. Immortalization of bovine dental papilla cells with simian virus 40 large t antigen. Thonemann, B., Schmalz, G. Arch. Oral Biol. (2000) [Pubmed]
  12. Inhibition of morphogenesis and stimulation of vascular proliferation in embryonic tooth cultures by a sarcoma growth factor preparation. Thesleff, I., Ekblom, P., Keski-Oja, J. Cancer Res. (1983) [Pubmed]
  13. Amelogenin gene expression in porcine odontoblasts. Oida, S., Nagano, T., Yamakoshi, Y., Ando, H., Yamada, M., Fukae, M. J. Dent. Res. (2002) [Pubmed]
  14. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. Cobourne, M.T., Hardcastle, Z., Sharpe, P.T. J. Dent. Res. (2001) [Pubmed]
  15. Effects of actinomycin D on developing hamster molar tooth germs in vitro. Lyaruu, D.M., van Duin, M.A., Bervoets, T.J., Wöltgens, J.H., Bronckers, A.L. Eur. J. Oral Sci. (1997) [Pubmed]
  16. Hepatocyte growth factor is involved in the morphogenesis of tooth germ in murine molars. Tabata, M.J., Kim, K., Liu, J.G., Yamashita, K., Matsumura, T., Kato, J., Iwamoto, M., Wakisaka, S., Matsumoto, K., Nakamura, T., Kumegawa, M., Kurisu, K. Development (1996) [Pubmed]
  17. Changes of secretory ameloblasts in mini-pig fetuses exposed to ethanol in vivo. Matthiessen, M.E., Rømert, P. J. Dent. Res. (1988) [Pubmed]
  18. Expression of basement membrane type IV collagen and type IV collagenases (MMP-2 and MMP-9) in human fetal teeth. Heikinheimo, K., Salo, T. J. Dent. Res. (1995) [Pubmed]
  19. Parathyroid hormone-related peptide is involved in protection against invasion of tooth germs by bone via promoting the differentiation of osteoclasts during tooth development. Liu, J.G., Tabata, M.J., Fujii, T., Ohmori, T., Abe, M., Ohsaki, Y., Kato, J., Wakisaka, S., Iwamoto, M., Kurisu, K. Mech. Dev. (2000) [Pubmed]
  20. A role for mesenchyme-derived tachykinins in tooth and mammary gland morphogenesis. Weil, M., Itin, A., Keshet, E. Development (1995) [Pubmed]
  21. In vitro collagen synthesis of tooth germs from newborn rats with protein-energy malnutrition. Nakamoto, T., Mallek, H.M., Miller, S.A. J. Dent. Res. (1979) [Pubmed]
  22. Inositol hexasulphate, a casein kinase inhibitor, alters enamel formation in cultured embryonic mouse tooth germs. Torres-Quintana, M.A., Lécolle, S., Septier, D., Palmier, B., Rani, S., MacDougall, M., Goldberg, M. J. Dent. Res. (2000) [Pubmed]
  23. Prostaglandin E2 and F2alpha in tooth germs. Miani, C., Patrono, C., Fossato, L., Ciabattoni, G., Deli, R., Pugliese, F. J. Dent. Res. (1978) [Pubmed]
  24. Accelerated bone formation and increased osteoblast number contribute to the abnormal tooth germ development in parathyroid hormone-related protein knockout mice. Kitahara, Y., Suda, N., Terashima, T., Baba, O., Mekaapiruk, K., Hammond, V.E., Takano, Y., Ohyama, K. Bone (2004) [Pubmed]
  25. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Chen, Y., Bei, M., Woo, I., Satokata, I., Maas, R. Development (1996) [Pubmed]
  26. Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. Fukumoto, S., Miner, J.H., Ida, H., Fukumoto, E., Yuasa, K., Miyazaki, H., Hoffman, M.P., Yamada, Y. J. Biol. Chem. (2006) [Pubmed]
  27. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Sasaki, T., Ito, Y., Xu, X., Han, J., Bringas, P., Maeda, T., Slavkin, H.C., Grosschedl, R., Chai, Y. Dev. Biol. (2005) [Pubmed]
  28. Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. Fukushima, H., Jimi, E., Kajiya, H., Motokawa, W., Okabe, K. J. Dent. Res. (2005) [Pubmed]
  29. Opg, Rank, and Rankl in tooth development: co-ordination of odontogenesis and osteogenesis. Ohazama, A., Courtney, J.M., Sharpe, P.T. J. Dent. Res. (2004) [Pubmed]
  30. Expression of class 3 semaphorins and neuropilin receptors in the developing mouse tooth. Løes, S., Kettunen, P., Kvinnsland, I.H., Taniguchi, M., Fujisawa, H., Luukko, K. Mech. Dev. (2001) [Pubmed]
  31. Polarizing activity, Sonic hedgehog, and tooth development in embryonic and postnatal mouse. Koyama, E., Yamaai, T., Iseki, S., Ohuchi, H., Nohno, T., Yoshioka, H., Hayashi, Y., Leatherman, J.L., Golden, E.B., Noji, S., Pacifici, M. Dev. Dyn. (1996) [Pubmed]
  32. Rat enamel contains RP59: a new context for a protein from osteogenic and haematopoietic precursor cells. Krüger, A., Somogyi, E., Christersson, C., Lundmark, C., Hultenby, K., Wurtz, T. Cell Tissue Res. (2005) [Pubmed]
  33. Experimental odontogenic cysts induced by in vitro 4-nitroquinoline 1-oxide (4NQO) treatment of F344 rat incisor tooth germs. Miura, Y., Ozaki, H.S., Li, T.J., Uemura, M., Kitano, M. J. Oral Pathol. Med. (1998) [Pubmed]
 
WikiGenes - Universities