The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Drinking Behavior

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Drinking Behavior


Psychiatry related information on Drinking Behavior


High impact information on Drinking Behavior


Chemical compound and disease context of Drinking Behavior

  • These results suggest that chronic administration of AIII did not produce sustained drinking behavior in SHRs, possibly because of the development of early desensitization of the angiotensin receptors [13].
  • There were no differences when saccharin was presented to naive animals, indicating that the different ethanol drinking behavior of HAB and LAB rats does not represent a general difference in the consumption of new liquids [14].
  • A consistent dose-related, naloxone-sensitive inhibition of the All-stimulated increase in plasma vasopressin concentration and drinking behavior (frequency) occurred after enkephalins, beta-endorphin or morphine. beta-Endorphin and morphine were longer acting and more potent than enkephalins [15].
  • This study examined the effects of various drug treatments (IP injections) proposed to modify central 5-hydroxytryptamine (5-HT) activity on a conditioned suppression of drinking behavior in water-deprived rats [16].
  • The present experiments examined the effect of nicotine exposure on the acquisition of ethanol drinking behavior in a limited access procedure [17].

Biological context of Drinking Behavior

  • Taken together, these results fit the proposed hypothesis for the development of alcoholism, i.e., drinking behavior is greatly influenced by the individual's genotypes of alcohol-metabolizing enzymes, and the risk of becoming alcoholic is proportionate with the ethanol consumption of the individual [18].
  • Acute i.p. administration of equimolar doses of 1,3-BD or ethanol to rats impaired the aerial righting reflex, attenuated the suppressive effect of punishment on drinking behavior, lowered blood pressure, caused a concomitant reduction in the content of guanosine 3',5'-monophosphate in the cerebellum and reduced ethanol withdrawal reactions [19].
  • The losartan-sensitive sites have been shown to mediate all of the major ANG II-induced biologic effects, including vasoconstriction, aldosterone and catecholamine release, and central, ANG II-induced drinking behavior [20].
  • Then, since angiotensin II (ANG II) is a potent stimulus for drinking behavior, we investigated the effects of intracerebroventricular (i.c.v.) administration of ANG II on cardiovascular and water intake responses [21].
  • Phenotypes other than a broad diagnostic categorization, such as opioid antagonist effects on drinking behavior in alcoholics, may provide more consistent evidence of a role for OPRM1 in behavioral variability [22].

Anatomical context of Drinking Behavior


Gene context of Drinking Behavior

  • Genetic deficiency of the mitochondrial aldehyde dehydrogenase (ALDH2) is frequent in Asian peoples where it is an important factor negatively regulating drinking behavior [27].
  • Both angiotensin-converting enzyme (ACE) and orexin (hypocretin) signaling can modulate drinking behavior through interactions with the dopaminergic system [28].
  • Intraperitoneal apelin injections induced an increase in drinking behavior within the first 30 min after injection, with a return to baseline within 1 h [29].
  • In contrast, neither the manifestations nor the drinking behavior were, in general, influenced by polymorphism of the alcohol dehydrogenase beta-subunit (ADH2) gene in males [30].
  • Although treatment with PB concurrent with stress did not produce further changes in either BuChE activity or acoustic startle responding, stress-induced alterations in drinking behavior (and thereby the dose of PB ingested) may have affected these results [31].

Analytical, diagnostic and therapeutic context of Drinking Behavior


  1. Drinking and subsequent suppression of vasopressin is unaltered by naloxone in dogs. Wade, C.E., Hunt, M.M. Pharmacol. Biochem. Behav. (1986) [Pubmed]
  2. Esophageal cancer risk by ALDH2 and ADH2 polymorphisms and alcohol consumption: exploration of gene-environment and gene-gene interactions. Yang, C.X., Matsuo, K., Ito, H., Hirose, K., Wakai, K., Saito, T., Shinoda, M., Hatooka, S., Mizutani, K., Tajima, K. Asian Pac. J. Cancer Prev. (2005) [Pubmed]
  3. A double-blind, placebo-controlled trial of lithium carbonate therapy for alcoholism. Fawcett, J., Clark, D.C., Aagesen, C.A., Pisani, V.D., Tilkin, J.M., Sellers, D., McGuire, M., Gibbons, R.D. Arch. Gen. Psychiatry (1987) [Pubmed]
  4. A comparison of alcohol sales data with survey data on self-reported alcohol use in 21 states. Smith, P.F., Remington, P.L., Williamson, D.F., Anda, R.F. American journal of public health. (1990) [Pubmed]
  5. Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Stanley, B.G., Daniel, D.R., Chin, A.S., Leibowitz, S.F. Peptides (1985) [Pubmed]
  6. Drinking behavior in water deprived rats after angiotensin receptor blockade. Severs, W.B., Kapsha, J.M., Klase, P.A., Keil, L.C. Pharmacology (1977) [Pubmed]
  7. Rural adolescent drinking behavior: three year follow-up in the New Hampshire substance abuse prevention study. Stevens, M.M., Mott, L.A., Youells, F. Adolescence. (1996) [Pubmed]
  8. betagamma Dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signaling and regulate ethanol consumption. Yao, L., Arolfo, M.P., Dohrman, D.P., Jiang, Z., Fan, P., Fuchs, S., Janak, P.H., Gordon, A.S., Diamond, I. Cell (2002) [Pubmed]
  9. Subfornical organ efferents to neural systems for control of body water. Miselis, R.R., Shapiro, R.E., Hand, P.J. Science (1979) [Pubmed]
  10. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Thomasson, H.R., Edenberg, H.J., Crabb, D.W., Mai, X.L., Jerome, R.E., Li, T.K., Wang, S.P., Lin, Y.T., Lu, R.B., Yin, S.J. Am. J. Hum. Genet. (1991) [Pubmed]
  11. Glucagon-like peptide 1(7-36) amide's central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment. Tang-Christensen, M., Vrang, N., Larsen, P.J. Diabetes (1998) [Pubmed]
  12. Imipramine treatment of alcoholism with comorbid depression. Nunes, E.V., McGrath, P.J., Quitkin, F.M., Stewart, J.P., Harrison, W., Tricamo, E., Ocepek-Welikson, K. The American journal of psychiatry. (1993) [Pubmed]
  13. Unsustained dipsogenic response to chronic central infusion of angiotensin-III in spontaneously hypertensive rats. Yang, C.C., Chan, J.Y., Chan, S.H. Endocrinology (1993) [Pubmed]
  14. Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Henniger, M.S., Spanagel, R., Wigger, A., Landgraf, R., Hölter, S.M. Neuropsychopharmacology (2002) [Pubmed]
  15. Endogenous opioid peptide inhibition of the central actions of angiotensin. Summy-Long, J.Y., Keil, L.C., Deen, K., Rosella, L., Severs, W.B. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  16. Lack of central 5-hydroxytryptamine influence on the anticonflict activity of diazepam. Kilts, C.D., Commissaris, R.L., Cordon, J.J., Rech, R.H. Psychopharmacology (Berl.) (1982) [Pubmed]
  17. Exposure to nicotine enhances acquisition of ethanol drinking by laboratory rats in a limited access paradigm. Smith, B.R., Horan, J.T., Gaskin, S., Amit, Z. Psychopharmacology (Berl.) (1999) [Pubmed]
  18. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shanghai. Muramatsu, T., Wang, Z.C., Fang, Y.R., Hu, K.B., Yan, H., Yamada, K., Higuchi, S., Harada, S., Kono, H. Hum. Genet. (1995) [Pubmed]
  19. Effects of acute and chronic 1,3-butanediol treatment on central nervous system function: a comparison with ethanol. Frye, G.D., Chapin, R.E., Vogel, R.A., Mailman, R.B., Kilts, C.D., Mueller, R.A., Breese, G.R. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  20. Angiotensin II receptors and functional correlates. Timmermans, P.B., Benfield, P., Chiu, A.T., Herblin, W.F., Wong, P.C., Smith, R.D. Am. J. Hypertens. (1992) [Pubmed]
  21. Enhanced effects of central angiotensin II on cardiovascular and drinking responses in inbred polydipsic (STR/N) mice. Chu, C.P., Kato, K., Kunitake, T., Watanabe, S., Qiu, D.L., Ueta, Y., Kannan, H. Brain Res. (2003) [Pubmed]
  22. Association of alcohol or other drug dependence with alleles of the mu opioid receptor gene (OPRM1). Kranzler, H.R., Gelernter, J., O'Malley, S., Hernandez-Avila, C.A., Kaufman, D. Alcohol. Clin. Exp. Res. (1998) [Pubmed]
  23. The effects of central norepinephrine infusions on drinking behavior induced by angiotensin after 6-hydroxydopamine injections into the anteroventral region of the third ventricle (AV3V). Cunningham, J.T., Johnson, A.K. Brain Res. (1991) [Pubmed]
  24. Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Kakar, S.S., Riel, K.K., Neill, J.D. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  25. Regional study of cerebral ventricle sensitive sites to angiotensin II. Hoffman, W.E., Phillips, M.I. Brain Res. (1976) [Pubmed]
  26. Angiotensin II and nitric oxide: a question of balance. Millatt, L.J., Abdel-Rahman, E.M., Siragy, H.M. Regul. Pept. (1999) [Pubmed]
  27. Mitochondrial aldehyde dehydrogenase polymorphism in Asian and American Indian populations: detection of new ALDH2 alleles. Novoradovsky, A., Tsai, S.J., Goldfarb, L., Peterson, R., Long, J.C., Goldman, D. Alcohol. Clin. Exp. Res. (1995) [Pubmed]
  28. Association of an orexin 1 receptor 408Val variant with polydipsia-hyponatremia in schizophrenic subjects. Meerabux, J., Iwayama, Y., Sakurai, T., Ohba, H., Toyota, T., Yamada, K., Nagata, R., Irukayama-Tomobe, Y., Shimizu, H., Yoshitsugu, K., Ohta, K., Yoshikawa, T. Biol. Psychiatry (2005) [Pubmed]
  29. Characterization of apelin, the ligand for the APJ receptor. Lee, D.K., Cheng, R., Nguyen, T., Fan, T., Kariyawasam, A.P., Liu, Y., Osmond, D.H., George, S.R., O'Dowd, B.F. J. Neurochem. (2000) [Pubmed]
  30. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Takeshita, T., Morimoto, K., Mao, X., Hashimoto, T., Furuyama, J. Hum. Genet. (1994) [Pubmed]
  31. Effects of inescapable stress and treatment with pyridostigmine bromide on plasma butyrylcholinesterase and the acoustic startle response in rats. Servatius, R.J., Ottenweller, J.E., Guo, W., Beldowicz, D., Zhu, G., Natelson, B.H. Physiol. Behav. (2000) [Pubmed]
  32. Angiotensin-induced drinking and the effect of bilateral nephrectomy. Gregory, T.J., Printz, M.P. Neuropharmacology (1983) [Pubmed]
  33. Effects of raclopride in the nucleus accumbens on ethanol seeking and consumption. Czachowski, C.L., Chappell, A.M., Samson, H.H. Alcohol. Clin. Exp. Res. (2001) [Pubmed]
  34. Relationship between the flushing response and drinking behavior among Japanese high school students. Suzuki, K., Matsushita, S., Ishii, T. Alcohol. Clin. Exp. Res. (1997) [Pubmed]
  35. Comparison of voluntary ethanol intake by two pairs of rat lines used as genetic models of anxiety. Da Silva, G.E., Ramos, A., Takahashi, R.N. Braz. J. Med. Biol. Res. (2004) [Pubmed]
WikiGenes - Universities