The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Water Deprivation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Water Deprivation


Psychiatry related information on Water Deprivation


High impact information on Water Deprivation


Chemical compound and disease context of Water Deprivation

  • When water deprivation was coupled with vasopressin administration, the maximum urinary concentration observed was 384 mOsm per kilogram of water [14].
  • To test the hypothesis that the severity of the concentrating defect is related to the percentage of sickle hemoglobin present in erythrocytes, urinary concentrating ability was examined after overnight water deprivation, and intranasal desmopressin acetate (dDAVP) in 27 individuals with HbAS [15].
  • We have previously shown that atrial natriuretic polypeptide is present in the brain with the highest concentration in the hypothalamus and septum and that intracerebroventricular injection of atrial natriuretic polypeptide inhibits water drinking induced by centrally injected angiotensin II or 24-hour water deprivation in rats [16].
  • Findings in the brains of severely dehydrated animals (water deprivation and mannitol injections for 4 days) were almost identical with those seen after alloxan treatment [17].
  • Although 48-h water deprivation resulted in comparable rises in plasma concentration and urinary excretion of AVP in the two groups, maximal Uosm in the Fe-loaded animals was significantly lower than that seen in the control group (P < 0.01) [18].

Biological context of Water Deprivation


Anatomical context of Water Deprivation


Gene context of Water Deprivation

  • After 1-desamino-8-d-arginine-vasopressin administration or water deprivation, the AQP3 null mice were able to concentrate their urine partially to approximately 30% of that in wild-type mice [29].
  • Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans [30].
  • The purpose of these studies was to examine the urinary concentrating ability, the expression of kidney water channels [aquaporins (AQP1 to AQP3)], and medullary thick ascending limb (mTAL) Na+-dependent transporters in old but not senescent versus young animals in response to water deprivation [31].
  • However, water deprivation for 24 h decreased urine volume from 58 +/- 9 to 28 +/- 4 microl x g body wt(-1) x 24 h(-1) in WT mice (P < 0.05), whereas in THP -/- mice this decrease was less pronounced (57 +/- 4 to 41 +/- 5 microl x g body wt(-1) x 24 h(-1); P < 0.05), revealing significant interstrain difference (P < 0.05) [32].
  • Our results show that prolonged water deprivation selectively regulates AT1 receptor expression and AT1A and AT1B receptor mRNA levels in the subfornical organ and anterior pituitary, respectively, supporting a role for these receptors during sustained dehydration [33].

Analytical, diagnostic and therapeutic context of Water Deprivation


  1. Idiopathic central diabetes insipidus is associated with abnormal blood supply to the posterior pituitary gland caused by vascular impairment of the inferior hypophyseal artery system. Maghnie, M., Altobelli, M., Di Iorgi, N., Genovese, E., Meloni, G., Manca-Bitti, M.L., Cohen, A., Bernasconi, S. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  2. P2Y2 receptor mRNA and protein expression is altered in inner medullas of hydrated and dehydrated rats: relevance to AVP-independent regulation of IMCD function. Kishore, B.K., Krane, C.M., Miller, R.L., Shi, H., Zhang, P., Hemmert, A., Sun, R., Nelson, R.D. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  3. The mechanism of urinary concentration in nephrogenic diabetes insipidus. McConnell, R.F., Lorentz, W.B., Berger, M., Smith, E.H., Carvajal, H.F., Travis, L.B. Pediatr. Res. (1977) [Pubmed]
  4. Super-reactivity to amphetamine toxicity induced by schedule of reinforcement. Valencia-Flores, M., Velázquez-Martínez, D.N., Villarreal, J.E. Psychopharmacology (Berl.) (1990) [Pubmed]
  5. Neonatal capsaicin treatment impairs vasopressin-mediated blood pressure recovery following acute hypotension. Bennett, T., Gardiner, S.M. Br. J. Pharmacol. (1984) [Pubmed]
  6. Neuroleptic-induced deficits in food and water regulation: similarities to the lateral hypothalamic syndrome. Zis, A.P., Fibiger, H.C. Psychopharmacologia. (1975) [Pubmed]
  7. Role of renin-angiotensin system in hypotension-evoked thirst: studies with hydralazine. Stocker, S.D., Sved, A.F., Stricker, E.M. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2000) [Pubmed]
  8. Regional changes in brain dopamine and serotonin metabolism induced by conditioned circling in rats: effects of water deprivation, learning and individual differences in asymmetry. Glick, S.D., Carlson, J.N. Brain Res. (1989) [Pubmed]
  9. Plasma corticosterone elevations in rats in response to consumption of concentrated sugar solutions. Hart, R.P., Coover, G.D., Shnerson, A., Smotherman, W.P. Journal of comparative and physiological psychology. (1980) [Pubmed]
  10. Reduced thirst after water deprivation in healthy elderly men. Phillips, P.A., Rolls, B.J., Ledingham, J.G., Forsling, M.L., Morton, J.J., Crowe, M.J., Wollner, L. N. Engl. J. Med. (1984) [Pubmed]
  11. Endothelin: a novel peptide in the posterior pituitary system. Yoshizawa, T., Shinmi, O., Giaid, A., Yanagisawa, M., Gibson, S.J., Kimura, S., Uchiyama, Y., Polak, J.M., Masaki, T., Kanazawa, I. Science (1990) [Pubmed]
  12. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Sagar, S.M., Sharp, F.R., Curran, T. Science (1988) [Pubmed]
  13. Dehydration activates an NF-kappaB-driven, COX2-dependent survival mechanism in renal medullary interstitial cells. Hao, C.M., Yull, F., Blackwell, T., Kömhoff, M., Davis, L.S., Breyer, M.D. J. Clin. Invest. (2000) [Pubmed]
  14. Light-chain nephropathy. Renal tubular dysfunction associated with light-chain proteinuria. Smithline, N., Kassirer, J.P., Cohen, J.J. N. Engl. J. Med. (1976) [Pubmed]
  15. Effects of alpha-thalassemia and sickle polymerization tendency on the urine-concentrating defect of individuals with sickle cell trait. Gupta, A.K., Kirchner, K.A., Nicholson, R., Adams, J.G., Schechter, A.N., Noguchi, C.T., Steinberg, M.H. J. Clin. Invest. (1991) [Pubmed]
  16. Centrally infused atrial natriuretic polypeptide attenuates exaggerated salt appetite in spontaneously hypertensive rats. Itoh, H., Nakao, K., Katsuura, G., Morii, N., Shiono, S., Sakamoto, M., Sugawara, A., Yamada, T., Saito, Y., Matsushita, A. Circ. Res. (1986) [Pubmed]
  17. Effects of alloxan diabetes, anti-insulin serum diabetes, and non-diabetic dehydration on brain carbohydrate and energy metabolism in young mice. Thurston, J.H., Hauhart, R.E., Jones, E.M., Ater, J.L. J. Biol. Chem. (1975) [Pubmed]
  18. Urinary concentrating defect in experimental hemochromatosis. Zhou, X.J., Vaziri, N.D., Pandian, D., Wang, Z.Q., Mazowiecki, M., Liao, S.Y., Oveisi, F. J. Am. Soc. Nephrol. (1996) [Pubmed]
  19. Role of countercurrent multiplication in renal ammonium handling: regulation of medullary ammonium accumulation. Packer, R.K., Desai, S.S., Hornbuckle, K., Knepper, M.A. J. Am. Soc. Nephrol. (1991) [Pubmed]
  20. Regulation of aquaporin mRNA expression in rat kidney by water intake. Murillo-Carretero, M.I., Ilundáin, A.A., Echevarria, M. J. Am. Soc. Nephrol. (1999) [Pubmed]
  21. The dipsogenic activity of prolactin in male and female rats. Kaufman, S. J. Physiol. (Lond.) (1981) [Pubmed]
  22. Kinetics of drug action in disease states. XXXVII. Effects of acute fluid overload and water deprivation on the hypnotic activity of phenobarbital and the neurotoxicity of theophylline in rats. Zhi, J.G., Levy, G. J. Pharmacol. Exp. Ther. (1989) [Pubmed]
  23. Renal function in unilateral nephrectomy subjects. Liu, P.L., Gallery, E.D., Grigg, R., Mahony, J.F., Gyory, A.Z. J. Urol. (1992) [Pubmed]
  24. TTF-1, a homeodomain-containing transcription factor, participates in the control of body fluid homeostasis by regulating angiotensinogen gene transcription in the rat subfornical organ. Son, Y.J., Hur, M.K., Ryu, B.J., Park, S.K., Damante, G., D'Elia, A.V., Costa, M.E., Ojeda, S.R., Lee, B.J. J. Biol. Chem. (2003) [Pubmed]
  25. Influence of short-term water deprivation on antipyrine disposition. Prasad, P., Jung, D., Niazi, S. Journal of pharmaceutical sciences. (1985) [Pubmed]
  26. Vasopressin mRNA expression in individual magnocellular neuroendocrine cells of the supraoptic and paraventricular nucleus in response to water deprivation. Meeker, R.B., Greenwood, R.S., Hayward, J.N. Neuroendocrinology (1991) [Pubmed]
  27. Rapid changes in poly (A) tail length of vasopressin and oxytocin mRNAs form a common early component of neurohypophyseal peptide gene activation following physiological stimulation. Carter, D.A., Murphy, D. Neuroendocrinology (1991) [Pubmed]
  28. Trophic and steroidogenic effects of water deprivation on the adrenal gland of the adult female rat. Chatelain, D., Montel, V., Dickes-Coopman, A., Chatelain, A., Deloof, S. Regul. Pept. (2003) [Pubmed]
  29. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Ma, T., Song, Y., Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J., Verkman, A.S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  30. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Pedersen, R.S., Bentzen, H., Bech, J.N., Pedersen, E.B. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  31. Resistance of mTAL Na+-dependent transporters and collecting duct aquaporins to dehydration in 7-month-old rats. Amlal, H., Wilke, C. Kidney Int. (2003) [Pubmed]
  32. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Bachmann, S., Mutig, K., Bates, J., Welker, P., Geist, B., Gross, V., Luft, F.C., Alenina, N., Bader, M., Thiele, B.J., Prasadan, K., Raffi, H.S., Kumar, S. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  33. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Sanvitto, G.L., Jöhren, O., Häuser, W., Saavedra, J.M. Am. J. Physiol. (1997) [Pubmed]
  34. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Willcutts, M.D., Felner, E., White, P.C. Hum. Mol. Genet. (1999) [Pubmed]
  35. Liver, brain, and heart metallothionein induction by stress. Hidalgo, J., Borrás, M., Garvey, J.S., Armario, A. J. Neurochem. (1990) [Pubmed]
  36. Water-deficit-responsive proteins in maritime pine. Costa, P., Bahrman, N., Frigerio, J.M., Kremer, A., Plomion, C. Plant Mol. Biol. (1998) [Pubmed]
  37. Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Brooks, V.L., Freeman, K.L., Clow, K.A. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  38. Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium. Gallardo, P., Cid, L.P., Vio, C.P., Sepúlveda, F.V. Am. J. Physiol. Gastrointest. Liver Physiol. (2001) [Pubmed]
WikiGenes - Universities