The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Cerebral Ventricles

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cerebral Ventricles


Psychiatry related information on Cerebral Ventricles


High impact information on Cerebral Ventricles

  • The infusion of either insulin or a small-molecule insulin mimetic in the third cerebral ventricle suppressed glucose production independent of circulating levels of insulin and of other glucoregulatory hormones [11].
  • Injection of angiotensin II (AII) into the cerebral ventricles at doses as low as 1 pmol h-1 results in a marked stimulation of salt and water ingestion in the rat [12].
  • The satiety produced by introduction of food into the intestine can be mimicked by systemic injections of CCK and its analogues-these hormones are also effective when injected into the hypothalamus and the cerebral ventricle [13].
  • This observation supports recent reports of elevated concentrations of norepinephrine in specific brain areas adjacent to the cerebral ventricles of paranoid schizophrenic patients [14].
  • Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding [15].

Chemical compound and disease context of Cerebral Ventricles


Biological context of Cerebral Ventricles


Anatomical context of Cerebral Ventricles


Associations of Cerebral Ventricles with chemical compounds

  • Tetrahydropapaveroline (THP), a dopamine-dopaldehyde condensation product, was delivered directly into the cerebral ventricle of rats automatically every 15 minutes for 12 days [30].
  • Stimulation of the region antero-ventral to the third cerebral ventricle (AV3V) by a cholinergic drug, carbachol, and lesions of the AV3V have been demonstrated in previous studies to either augment or decrease sodium excretion, respectively [31].
  • To evaluate a possible physiological role of endogenous substance P (SP) in the control of growth hormone (GH; somatotropin) secretion, a specific antiserum against SP (anti-SP) was injected intraventricularly (3 microliters into the third cerebral ventricle) in unanesthetized unrestrained normal male rats [32].
  • We injected recombinant human IL-1 alpha into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats [33].
  • Oxytocin (OXT) and [pGlu4,Cyt6]OXT-(4-8) have the opposite effect and attenuate passive avoidance behavior also when administered into the cerebral ventricle after the learning trial [34].

Gene context of Cerebral Ventricles


Analytical, diagnostic and therapeutic context of Cerebral Ventricles


  1. Opioid antagonist diprenorphine microinjected into parabrachial nucleus selectively inhibits vasopressin response to hypovolemic stimuli in the rat. Iwasaki, Y., Gaskill, M.B., Fu, R., Saper, C.B., Robertson, G.L. J. Clin. Invest. (1993) [Pubmed]
  2. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Rosenberg, G.A., Scremin, O., Estrada, E., Kyner, W.T. Stroke (1992) [Pubmed]
  3. Effect of intrahypothalamic injection of neostigmine on the secretion of epinephrine and norepinephrine and on plasma glucose level. Honmura, A., Yanase, M., Saito, H., Iguchi, A. Endocrinology (1992) [Pubmed]
  4. Central dopaminergic origin of bromocriptine induced tachycardia in normotensive rats. Lahlou, S., Duarte, G.P., Demenge, P. Cardiovasc. Res. (1993) [Pubmed]
  5. Role of brain prostaglandins in the control of vasopressin secretion in the conscious rat. Brooks, D.P., Share, L., Crofton, J.T. Endocrinology (1986) [Pubmed]
  6. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., Ishibashi, Y., Oka, J., Shido, O. J. Neurochem. (2002) [Pubmed]
  7. Antipodal central effects of apomorphine and dopamine in chickens. Koc, B.A., Marley, E. Neuropharmacology (1982) [Pubmed]
  8. Interaction between nicotine and endogenous opioid mechanisms in the unanesthetized dog. Kamerling, S.G., Wettstein, J.G., Sloan, J.W., Su, T.P., Martin, W.R. Pharmacol. Biochem. Behav. (1982) [Pubmed]
  9. Congenital schizencephaly associated with in utero warfarin exposure. Pati, S., Helmbrecht, G.D. Reprod. Toxicol. (1994) [Pubmed]
  10. Effects of intraventricular injection of Sar1-Ala8-angiotensin II on plasma vasopressin level increased by angiotensin II and by water deprivation in conscious rats. Yamaguchi, K., Hama, H., Sakaguchi, T., Negoro, H., Kamoi, K. Acta Endocrinol. (1980) [Pubmed]
  11. Hypothalamic insulin signaling is required for inhibition of glucose production. Obici, S., Zhang, B.B., Karkanias, G., Rossetti, L. Nat. Med. (2002) [Pubmed]
  12. Exaggerated salt appetite of spontaneously hypertensive rats is decreased by central angiotensin-converting enzyme blockade. DiNicolantonio, R., Hutchinson, J.S., Mendelsohn, F.A. Nature (1982) [Pubmed]
  13. Alterations in brain cholecystokinin receptors after fasting. Saito, A., Williams, J.A., Goldfine, I.D. Nature (1981) [Pubmed]
  14. Schizophrenia: elevated cerebrospinal fluid norepinephrine. Lake, C.R., Sternberg, D.E., van Kammen, D.P., Ballenger, J.C., Ziegler, M.G., Post, R.M., Kopin, I.J., Bunney, W.E. Science (1980) [Pubmed]
  15. Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding. Della-Fera, M.A., Baile, C.A. Science (1979) [Pubmed]
  16. Effect of rat subarachnoid hemorrhage on serotonin innervation of the cerebral ventricular wall and serotonin neurons of the ventral surface of the brain stem: an immunohistochemical study. Hara, H., Kobayashi, S. Exp. Neurol. (1993) [Pubmed]
  17. Cardiovascular responses produced by the injection of dopamine into the cerebral ventricles of the unanaesthetized dog. Lang, W.J., Woodman, O.L. Br. J. Pharmacol. (1979) [Pubmed]
  18. Emesis induced by 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium chloride (McN-A-343): evidence for a predominant central muscarinic M1 mediation. Beleslin, D.B., Nedelkovski, V. Neuropharmacology (1988) [Pubmed]
  19. The calcium antagonist diltiazem has antiarrhythmic effects which are mediated in the brain through endogenous opioids. Rabkin, S.W. Neuropharmacology (1992) [Pubmed]
  20. Inhibition of reflex vagal bradycardia by a central action of 5-hydroxytryptophan. Tadepalli, A.S. Br. J. Pharmacol. (1980) [Pubmed]
  21. Baroreflex impairment precedes hypertension during chronic cerebroventricular infusion of hypertonic sodium chloride in rats. Buñag, R.D., Miyajima, E. J. Clin. Invest. (1984) [Pubmed]
  22. Central nervous system effects of corticotropin-releasing factor on gastrointestinal transit in the rat. Lenz, H.J., Burlage, M., Raedler, A., Greten, H. Gastroenterology (1988) [Pubmed]
  23. Central leptin acutely reverses diet-induced hepatic insulin resistance. Pocai, A., Morgan, K., Buettner, C., Gutierrez-Juarez, R., Obici, S., Rossetti, L. Diabetes (2005) [Pubmed]
  24. Melanocortin-independent effects of leptin on hepatic glucose fluxes. Gutiérrez-Juárez, R., Obici, S., Rossetti, L. J. Biol. Chem. (2004) [Pubmed]
  25. Corticotropin-releasing factor. Mechanisms to inhibit gastric acid secretion in conscious dogs. Lenz, H.J., Hester, S.E., Brown, M.R. J. Clin. Invest. (1985) [Pubmed]
  26. Differential cardiovascular effects of centrally administered vasopressin in conscious Long Evans and Brattleboro rats. Harland, D., Gardiner, S.M., Bennett, T. Circ. Res. (1989) [Pubmed]
  27. Hypothalamic beta 2-adrenoceptor control of renal sympathetic nerve activity and urinary sodium excretion in conscious, spontaneously hypertensive rats. Koepke, J.P., Jones, S., DiBona, G.F. Circ. Res. (1986) [Pubmed]
  28. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. Heckers, S., Ohtake, T., Wiley, R.G., Lappi, D.A., Geula, C., Mesulam, M.M. J. Neurosci. (1994) [Pubmed]
  29. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Pringle, N.P., Richardson, W.D. Development (1993) [Pubmed]
  30. Alcohol drinking: abnormal intake caused by tetrahydropapaveroline in brain. Myers, R.D., Melchior, C.L. Science (1977) [Pubmed]
  31. Role of the hypothalamus in the control of atrial natriuretic peptide release. Baldissera, S., Menani, J.W., dos Santos, L.F., Favaretto, A.L., Gutkowska, J., Turrin, M.Q., McCann, S.M., Antunes-Rodrigues, J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  32. Role of substance P in suppressing growth hormone release in the rat. Arisawa, M., Snyder, G.D., De Palatis, L., Ho, R.H., Xu, R.K., Pan, G., McCann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  33. Interleukin 1 alpha inhibits prostaglandin E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone. Rettori, V., Gimeno, M.F., Karara, A., Gonzalez, M.C., McCann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  34. Interactive effects of neurohypophyseal neuropeptides with receptor antagonists on passive avoidance behavior: mediation by a cerebral neurohypophyseal hormone receptor? de Wied, D., Elands, J., Kovács, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  35. Genetic disruption of gamma-melanocyte-stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. Ni, X.P., Pearce, D., Butler, A.A., Cone, R.D., Humphreys, M.H. J. Clin. Invest. (2003) [Pubmed]
  36. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y. Inui, A., Okita, M., Nakajima, M., Momose, K., Ueno, N., Teranishi, A., Miura, M., Hirosue, Y., Sano, K., Sato, M., Watanabe, M., Sakai, T., Watanabe, T., Ishida, K., Silver, J., Baba, S., Kasuga, M. Proc. Assoc. Am. Physicians (1998) [Pubmed]
  37. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Matsumoto, M., Weickert, C.S., Akil, M., Lipska, B.K., Hyde, T.M., Herman, M.M., Kleinman, J.E., Weinberger, D.R. Neuroscience (2003) [Pubmed]
  38. Deletion including the oligophrenin-1 gene associated with enlarged cerebral ventricles, cerebellar hypoplasia, seizures and ataxia. Tentler, D., Gustavsson, P., Leisti, J., Schueler, M., Chelly, J., Timonen, E., Annerén, G., Willard, H.F., Dahl, N. Eur. J. Hum. Genet. (1999) [Pubmed]
  39. Comparison of central administration of corticotropin-releasing hormone and urocortin on food intake, conditioned taste aversion, and c-Fos expression. Benoit, S.C., Thiele, T.E., Heinrichs, S.C., Rushing, P.A., Blake, K.A., Steeley, R.J. Peptides (2000) [Pubmed]
  40. Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. Cao, C., Matsumura, K., Ozaki, M., Watanabe, Y. J. Neurosci. (1999) [Pubmed]
  41. Transplantation of fetal rat islets into the cerebral ventricles of alloxan-diabetic rats. Amelioration of diabetes by syngeneic but not allogeneic islets. McEvoy, R.C., Leung, P.E. Diabetes (1983) [Pubmed]
  42. Hypertensive mechanisms associated with centrally administered aldosterone in dogs. Kageyama, Y., Bravo, E.L. Hypertension (1988) [Pubmed]
  43. Response of local blood flow in the caudate nucleus of the cat to intraventricular administration of carbachol. De Ley, G., Weyne, J., Demeester, G., Leusen, I. Stroke (1984) [Pubmed]
  44. Multiple control of fever production in the central nervous system of rabbits. Morimoto, A., Murakami, N., Nakamori, T., Watanabe, T. J. Physiol. (Lond.) (1988) [Pubmed]
WikiGenes - Universities