The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sinus of Valsalva

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sinus of Valsalva

 

High impact information on Sinus of Valsalva

  • Citrate-treated C57BL/6 mice fed the Ath diet showed extensive oil red O-staining fatty streak aortic sinus lesions (20,537+/-2,957 micron2), the size of which did not differ for Ath-fed mice treated with STZ (16,836+/-2,136 micron2) [6].
  • After 12 weeks of being fed a cholesterol-enriched atherogenic diet, mice injected with GdCl(3) exhibited 50% reductions in both aortic sinus atherosclerotic lesions (P < 0.0097) and surface lesions of the abdominal aorta (P < 0.006) [7].
  • Lipid and macrophage contents of the aortic sinus plaques were measured after oil-red O and Mac-1 antibody staining, respectively, and quantified with computed morphometry [8].
  • We have therefore generated apolipoprotein E-deficient mice genetically deficient in specific T lymphocyte subpopulations and measured atherosclerotic lesions in the aortic sinus and en face whole aorta preparation at 18 weeks and at 1 year of age [9].
  • The presence of LTalpha was observed in aortic sinus lesions suggesting a direct role of LTalpha in modulating lesion growth [10].
 

Chemical compound and disease context of Sinus of Valsalva

 

Biological context of Sinus of Valsalva

  • In contrast to wild-type and AT1-/- mice, this treatment led to severe atherosclerotic lesion formation in the aortic sinus and the aorta (oil red O staining) and to an impaired endothelium-dependent vasodilation (organ chamber experiments with isolated aortic segments) in ApoE-/- mice [14].
 

Anatomical context of Sinus of Valsalva

 

Associations of Sinus of Valsalva with chemical compounds

  • Animals were treated with azithromycin for 6 weeks after the third inoculation and the atherosclerotic lesion areas in the aortic sinus were measured by computer-assisted morphometry [20].
  • Losartan treatment reduced lesion area at the aortic sinus, although differences were only significant in female mice [11].
  • The remaining patients with similar diagnoses did not develop a marked increase in coronary sinus thromboxane B2 or the coronary sinus/aortic thromboxane B2 ratio with provocation [21].
  • Peripheral venous TxB2 levels did not correlate with TxB2 levels in coronary sinus (r = 0.01) or the TxB2 coronary sinus/aortic ratios (r = 0.21) [22].
  • Thus, in contrast to LDLR-deficient mice, probucol had a strong proatherogenic effect in the aortic sinus of apoE-deficient mice associated with the reduction of HDL levels in spite of the reduction of total plasma cholesterol levels [23].
 

Gene context of Sinus of Valsalva

  • Therefore, expression levels of monocyte chemoattractant protein-1 (MCP-1), as well as other chemokines involved in macrophage infiltration into the lesion area, were measured in the aortic sinus of control and irbesartan-treated animals [24].
  • On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P<0.05) [25].
  • Immunohistochemical staining for scavenger receptor protein in the aortic sinus was more intense in lesions from the p55-null mice as compared with wild type controls [26].
  • Aortic sinus lesion area of ob/ob;apoE-/- mice was increased 3.2-fold above ob/ob;LDLR-/- mice (102,455+/-8565 microm2/section versus 31,750+/-4478 microm2/section, P<0.001) [27].
  • Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus [28].
 

Analytical, diagnostic and therapeutic context of Sinus of Valsalva

References

  1. Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta. Grainger, D.J., Witchell, C.M., Metcalfe, J.C. Nat. Med. (1995) [Pubmed]
  2. Congenital aneurysm of the left sinus of Valsalva with an aortopulmonary tunnel. Scagliotti, D., Fisher, E.A., Deal, B.J., Gordon, D., Chomka, E.V., Brundage, B.H. J. Am. Coll. Cardiol. (1986) [Pubmed]
  3. Rupture of an aneurysm of the sinus of Valsalva into the superior vena cava. Kaye, G.C., Edmonson, S.J., Caplin, J.L., Tunstall-Pedoe, D.S. Thorax (1984) [Pubmed]
  4. Transaortic repair of ruptured aneurysm of sinus of Valsalva. Fifteen-year experience. Hamid, I.A., Jothi, M., Rajan, S., Monro, J.L., Cherian, K.M. J. Thorac. Cardiovasc. Surg. (1994) [Pubmed]
  5. Cardiovascular evaluation of the child and adolescent before participation in sports. Driscoll, D.J. Mayo Clin. Proc. (1985) [Pubmed]
  6. Increased atherosclerosis in streptozotocin-induced diabetic mice. Kunjathoor, V.V., Wilson, D.L., LeBoeuf, R.C. J. Clin. Invest. (1996) [Pubmed]
  7. Facilitated replacement of Kupffer cells expressing a paraoxonase-1 transgene is essential for ameliorating atherosclerosis in mice. Bradshaw, G., Gutierrez, A., Miyake, J.H., Davis, K.R., Li, A.C., Glass, C.K., Curtiss, L.K., Davis, R.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Shah, P.K., Nilsson, J., Kaul, S., Fishbein, M.C., Ageland, H., Hamsten, A., Johansson, J., Karpe, F., Cercek, B. Circulation (1998) [Pubmed]
  9. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Elhage, R., Gourdy, P., Brouchet, L., Jawien, J., Fouque, M.J., Fiévet, C., Huc, X., Barreira, Y., Couloumiers, J.C., Arnal, J.F., Bayard, F. Am. J. Pathol. (2004) [Pubmed]
  10. Loss of lymphotoxin-alpha but not tumor necrosis factor-alpha reduces atherosclerosis in mice. Schreyer, S.A., Vick, C.M., LeBoeuf, R.C. J. Biol. Chem. (2002) [Pubmed]
  11. Differential effects of angiotensin II on atherogenesis at the aortic sinus and descending aorta of apolipoprotein-E-deficient mice. Zhou, Y., Chen, R., Catanzaro, S.E., Hu, L., Dansky, H.M., Catanzaro, D.F. Am. J. Hypertens. (2005) [Pubmed]
  12. Pyridoxine-responsive homocystinuria with ruptured sinus of Valsalva in a Chinese boy. Hou, J.W., Wang, T.R. J. Inherit. Metab. Dis. (1994) [Pubmed]
  13. Sinus of Valsalva aneurysm presenting as myocardial infarction during dobutamine stress test. Ferreira, A.C., de Marchena, E., Mayor, M., Bolooki, H. Catheterization and cardiovascular diagnosis. (1996) [Pubmed]
  14. Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Wassmann, S., Czech, T., van Eickels, M., Fleming, I., Böhm, M., Nickenig, G. Circulation (2004) [Pubmed]
  15. Consumption of vitamin E in coronary circulation in patients with variant angina. Miwa, K., Igawa, A., Nakagawa, K., Hirai, T., Inoue, H. Cardiovasc. Res. (1999) [Pubmed]
  16. Detailed anatomy of the normally functioning aortic valve in hearts of normal and increased weight. Silver, M.A., Roberts, W.C. Am. J. Cardiol. (1985) [Pubmed]
  17. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. Afek, A., George, J., Gilburd, B., Rauova, L., Goldberg, I., Kopolovic, J., Harats, D., Shoenfeld, Y. J. Autoimmun. (2000) [Pubmed]
  18. In vivo electrotransfer of interleukin-10 cDNA prevents endothelial upregulation of activated NF-kappaB and adhesion molecules following an atherogenic diet. Potteaux, S., Deleuze, V., Merval, R., Bureau, M.F., Esposito, B., Scherman, D., Tedgui, A., Mallat, Z. Eur. Cytokine Netw. (2006) [Pubmed]
  19. Inhibition of intimal lipid deposition in human apolipoprotein A1 transgenic mice. She, M., Li, H., Yu, L., Gu, S., Wang, Z. Clin. Exp. Pharmacol. Physiol. (1999) [Pubmed]
  20. A 6 week course of azithromycin treatment has no beneficial effect on atherosclerotic lesion development in apolipoprotein E-deficient mice chronically infected with Chlamydia pneumoniae. Blessing, E., Campbell, L.A., Rosenfeld, M.E., Chesebro, B., Kuo, C.C. J. Antimicrob. Chemother. (2005) [Pubmed]
  21. Effects of provocation on transcardiac thromboxane in patients with coronary artery disease. Hirsh, P.D., Firth, B.G., Campbell, W.B., Dehmer, G.J., Willerson, J.T., Hillis, L.D. Am. J. Cardiol. (1983) [Pubmed]
  22. Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. Hirsh, P.D., Firth, B.G., Campbell, W.B., Willerson, J.T., Hillis, L.D. Am. Heart J. (1982) [Pubmed]
  23. Effects of probucol on atherosclerosis of apoE-deficient or LDL receptor-deficient mice. Yoshikawa, T., Shimano, H., Chen, Z., Ishibashi, S., Yamada, N. Horm. Metab. Res. (2001) [Pubmed]
  24. Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. Dol, F., Martin, G., Staels, B., Mares, A.M., Cazaubon, C., Nisato, D., Bidouard, J.P., Janiak, P., Schaeffer, P., Herbert, J.M. J. Cardiovasc. Pharmacol. (2001) [Pubmed]
  25. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., Terasaka, N., Inaba, T., Funahashi, T., Matsuzawa, Y. Circulation (2002) [Pubmed]
  26. Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. Schreyer, S.A., Peschon, J.J., LeBoeuf, R.C. J. Biol. Chem. (1996) [Pubmed]
  27. Plasma insulin levels predict atherosclerotic lesion burden in obese hyperlipidemic mice. Gruen, M.L., Saraswathi, V., Nuotio-Antar, A.M., Plummer, M.R., Coenen, K.R., Hasty, A.H. Atherosclerosis (2006) [Pubmed]
  28. Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Canault, M., Peiretti, F., Mueller, C., Kopp, F., Morange, P., Rihs, S., Portugal, H., Juhan-Vague, I., Nalbone, G. Atherosclerosis (2004) [Pubmed]
  29. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Crawford, R.S., Kirk, E.A., Rosenfeld, M.E., LeBoeuf, R.C., Chait, A. Arterioscler. Thromb. Vasc. Biol. (1998) [Pubmed]
  30. Ruptured congenital aneurysm of the sinus of Valsalva with persistent left superior vena cava imaged by intraoperative transesophageal echocardiography. Flynn, M.S., Castello, R., McBride, L.W., Labovitz, A.J. Am. Heart J. (1993) [Pubmed]
  31. Anomalous origin of the right coronary artery from the left sinus of valsalva: transthoracic echocardiographic diagnosis. Frommelt, P.C., Friedberg, D.Z., Frommelt, M.A., Williamson, J.G. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. (1999) [Pubmed]
  32. Right aortic sinus of Valsalva-to-right ventricle fistula complicating bacterial endocarditis of membranous ventricular septal defect: evaluation by two-dimensional, color flow, and Doppler echocardiography. Bansal, R.C., Wangsnes, K.M., Bailey, L. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. (1993) [Pubmed]
 
WikiGenes - Universities