The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Foot-and-Mouth Disease

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Foot-and-Mouth Disease

 

High impact information on Foot-and-Mouth Disease

 

Chemical compound and disease context of Foot-and-Mouth Disease

 

Biological context of Foot-and-Mouth Disease

 

Anatomical context of Foot-and-Mouth Disease

 

Gene context of Foot-and-Mouth Disease

  • In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases [26].
  • We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-alpha/beta) [5].
  • A recombinant, arginine-glycine-aspartic acid (RGD) motif from foot-and-mouth disease virus binds mammalian cells through vitronectin and, to a lower extent, fibronectin receptors [27].
  • To ensure the equal expression of both subunits, we used the self-cleaving properties of the 2A oligopeptide from foot-and-mouth disease virus (FMDV) to express IL-12 as a single, long open reading frame (ORF) encoding p402Ap35 [28].
  • A synthetic oligodeoxynucleotide corresponding to an antigenic determinant of the C-terminal part of the VP1 protein of foot-and-mouth disease virus was inserted into the phoE gene in an area corresponding to a cell surface-exposed region of the PhoE protein [29].
 

Analytical, diagnostic and therapeutic context of Foot-and-Mouth Disease

References

  1. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Kleid, D.G., Yansura, D., Small, B., Dowbenko, D., Moore, D.M., Grubman, M.J., McKercher, P.D., Morgan, D.O., Robertson, B.H., Bachrach, H.L. Science (1981) [Pubmed]
  2. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. Mateo, R., Díaz, A., Baranowski, E., Mateu, M.G. J. Biol. Chem. (2003) [Pubmed]
  3. Guanidine-resistant poliovirus mutants produce modified 37-kilodalton proteins. Anderson-Sillman, K., Bartal, S., Tershak, D.R. J. Virol. (1984) [Pubmed]
  4. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. Kirchweger, R., Ziegler, E., Lamphear, B.J., Waters, D., Liebig, H.D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R.E. J. Virol. (1994) [Pubmed]
  5. Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. Chinsangaram, J., Moraes, M.P., Koster, M., Grubman, M.J. J. Virol. (2003) [Pubmed]
  6. The structure of a protein primer-polymerase complex in the initiation of genome replication. Ferrer-Orta, C., Arias, A., Agudo, R., Pérez-Luque, R., Escarmís, C., Domingo, E., Verdaguer, N. EMBO J. (2006) [Pubmed]
  7. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. Fry, E.E., Lea, S.M., Jackson, T., Newman, J.W., Ellard, F.M., Blakemore, W.E., Abu-Ghazaleh, R., Samuel, A., King, A.M., Stuart, D.I. EMBO J. (1999) [Pubmed]
  8. The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I; 4E-BP1) in the reticulocyte lysate. Ohlmann, T., Pain, V.M., Wood, W., Rau, M., Morley, S.J. EMBO J. (1997) [Pubmed]
  9. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. Verdaguer, N., Mateu, M.G., Andreu, D., Giralt, E., Domingo, E., Fita, I. EMBO J. (1995) [Pubmed]
  10. The molecular basis of the antigenic variation of foot-and-mouth disease virus. Beck, E., Feil, G., Strohmaier, K. EMBO J. (1983) [Pubmed]
  11. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. Ohlmann, T., Rau, M., Pain, V.M., Morley, S.J. EMBO J. (1996) [Pubmed]
  12. Viral capsid mobility: a dynamic conduit for inactivation. Broo, K., Wei, J., Marshall, D., Brown, F., Smith, T.J., Johnson, J.E., Schneemann, A., Siuzdak, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  13. Efficient use of lactose for the lac promoter-controlled overexpression of the main antigenic protein of the foot and mouth disease virus in Escherichia coli under fed-batch fermentation conditions. Neubauer, P., Hofmann, K. FEMS Microbiol. Rev. (1994) [Pubmed]
  14. Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. Mateu, M.G., Valero, M.L., Andreu, D., Domingo, E. J. Biol. Chem. (1996) [Pubmed]
  15. Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide. Petit, M.C., Benkirane, N., Guichard, G., Du, A.P., Marraud, M., Cung, M.T., Briand, J.P., Muller, S. J. Biol. Chem. (1999) [Pubmed]
  16. Point mutations within the betaG-betaH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. Leippert, M., Beck, E., Weiland, F., Pfaff, E. J. Virol. (1997) [Pubmed]
  17. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. Zibert, A., Maass, G., Strebel, K., Falk, M.M., Beck, E. J. Virol. (1990) [Pubmed]
  18. Mutant viral polymerase in the transition of virus to error catastrophe identifies a critical site for RNA binding. Arias, A., Agudo, R., Ferrer-Orta, C., Pérez-Luque, R., Airaksinen, A., Brocchi, E., Domingo, E., Verdaguer, N., Escarmís, C. J. Mol. Biol. (2005) [Pubmed]
  19. Genetic heterogeneity in the foot-and-mouth disease virus Leader and 3C proteinases. van Rensburg, H., Haydon, D., Joubert, F., Bastos, A., Heath, L., Nel, L. Gene (2002) [Pubmed]
  20. Conservation of L and 3C proteinase activities across distantly related aphthoviruses. Hinton, T.M., Ross-Smith, N., Warner, S., Belsham, G.J., Crabb, B.S. J. Gen. Virol. (2002) [Pubmed]
  21. The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W., King, A.M. J. Virol. (2000) [Pubmed]
  22. The alpha(v)beta6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. Monaghan, P., Gold, S., Simpson, J., Zhang, Z., Weinreb, P.H., Violette, S.M., Alexandersen, S., Jackson, T. J. Gen. Virol. (2005) [Pubmed]
  23. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. Glaser, W., Skern, T. FEBS Lett. (2000) [Pubmed]
  24. Selection of T-cell epitopes from foot-and-mouth disease virus reflects the binding affinity to different cattle MHC class II molecules. Haghparast, A., Wauben, M.H., Grosfeld-Stulemeyer, M.C., van Kooten, P., Hensen, E.J. Immunogenetics (2000) [Pubmed]
  25. A micro-enzyme-lavelled immunosorbent assay (MICORELISA) for the detection of foot-and-mouth disease virus antigen and antibody. Rai, A., Lahiri, D.K. Acta Virol. (1981) [Pubmed]
  26. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. Ali, I.K., McKendrick, L., Morley, S.J., Jackson, R.J. J. Virol. (2001) [Pubmed]
  27. A recombinant, arginine-glycine-aspartic acid (RGD) motif from foot-and-mouth disease virus binds mammalian cells through vitronectin and, to a lower extent, fibronectin receptors. Villaverde, A., Feliu, J.X., Harbottle, R.P., Benito, A., Coutelle, C. Gene (1996) [Pubmed]
  28. Ovine interleukin-12: analysis of biologic function and species comparison. De Rose, R., Scheerlinck, J.P., Casey, G., Wood, P.R., Tennent, J.M., Chaplin, P.J. J. Interferon Cytokine Res. (2000) [Pubmed]
  29. Use of outer membrane protein PhoE as a carrier for the transport of a foreign antigenic determinant to the cell surface of Escherichia coli K-12. Agterberg, M., Adriaanse, H., Tommassen, J. Gene (1987) [Pubmed]
  30. Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. Sierra, S., Dávila, M., Lowenstein, P.R., Domingo, E. J. Virol. (2000) [Pubmed]
  31. Comparison of a liquid-phase blocking sandwich ELISA and a serum neutralization test to evaluate immunity in potency tests of foot-and-mouth disease vaccines. Van Maanen, C., Terpstra, C. J. Immunol. Methods (1989) [Pubmed]
  32. Foot-and-mouth disease. Challenge of cattle after multiple vaccinations. Straub, O.C. Comp. Immunol. Microbiol. Infect. Dis. (1995) [Pubmed]
  33. Use of short analytical ultracentrifugation runs for the isopycnic determination of foot-and-mouth disease virus concentration and density in autoformed caesium chloride gradients. Strobbe, R. Ann. Rech. Vet. (1983) [Pubmed]
  34. Comparative quantification of foot-and-mouth disease virus (146 S antigen) by sucrose and potassium-bromide density gradient centrifugation. Liebermann, H., Hantschel, H. Archiv für experimentelle Veterinärmedizin. (1988) [Pubmed]
 
WikiGenes - Universities