The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC19A2  -  solute carrier family 19 (thiamine...

Homo sapiens

Synonyms: Solute carrier family 19 member 2, TC1, THMD1, THT1, THTR1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC19A2


Psychiatry related information on SLC19A2


High impact information on SLC19A2


Chemical compound and disease context of SLC19A2


Biological context of SLC19A2


Anatomical context of SLC19A2


Associations of SLC19A2 with chemical compounds

  • Recently, a new family of facilitative carriers has been cloned consisting of the reduced folate (SLC19A1) and the thiamine (SLC19A2) transporters [19].
  • Moreover, chronic (48 h) exposure of cells to caffeine (1 microM) stimulated and chronic exposure to xanthohumol and iso-xanthohumol (1 and 0.1 microM, respectively) inhibited (3)H-thiamine uptake, these effects being not mediated through modulation of the expression levels of either hThTr-1 or hSERT mRNA [20].
  • We hypothesize that thiamine transport, mediated by SLC19A2, plays a role in the development and or maintenance of several organ systems, in particular the erythropoietic, auditory, and glucose homeostasis systems [21].
  • Fluxes through glycolysis are similar in TRMA versus control fibroblasts in the pentose and TCA cycles [8].
  • At age 2.5 years, because of the presence of diabetes and sensorineural deafness, she was diagnosed with TRMA syndrome and started treatment with thiamine-HCl, followed very early by benzoyloxymethyl-thiamine (BOM-T) [22].

Other interactions of SLC19A2

  • Deletion analysis identified the differentiation-responsive region to be at position -356 to -275 bp for the SLC19A2 promoter and at position -77 to -13 bp for the SLC19A3 promoter [11].
  • Thiamine-responsive megaloblastic anaemia (TRMA), also known as Rogers syndrome, is an early onset, autosomal recessive disorder defined by the occurrence of megaloblastic anaemia, diabetes mellitus and sensorineural deafness, responding in varying degrees to thiamine treatment (MIM 249270) [1].
  • Thiamine responsive megaloblastic anemia (TRMA) is an autosomal recessive disorder with a triad of symptoms: megaloblastic anemia, deafness, and non-type 1 diabetes mellitus [2].

Analytical, diagnostic and therapeutic context of SLC19A2


  1. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Labay, V., Raz, T., Baron, D., Mandel, H., Williams, H., Barrett, T., Szargel, R., McDonald, L., Shalata, A., Nosaka, K., Gregory, S., Cohen, N. Nat. Genet. (1999) [Pubmed]
  2. The spectrum of mutations, including four novel ones, in the thiamine-responsive megaloblastic anemia gene SLC19A2 of eight families. Raz, T., Labay, V., Baron, D., Szargel, R., Anbinder, Y., Barrett, T., Rabl, W., Viana, M.B., Mandel, H., Baruchel, A., Cayuela, J.M., Cohen, N. Hum. Mutat. (2000) [Pubmed]
  3. Analysis of slc19a2, on 1q23.3 encoding a thiamine transporter as a candidate gene for type 2 diabetes mellitus in pima indians. Thameem, F., Wolford, J.K., Bogardus, C., Prochazka, M. Mol. Genet. Metab. (2001) [Pubmed]
  4. Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. Liu, S., Huang, H., Lu, X., Golinski, M., Comesse, S., Watt, D., Grossman, R.B., Moscow, J.A. Mol. Cancer Res. (2003) [Pubmed]
  5. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. Joiner, K.A., Ganz, T., Albert, J., Rotrosen, D. J. Cell Biol. (1989) [Pubmed]
  6. Direct genomic PCR sequencing of the high affinity thiamine transporter (SLC19A2) gene identifies three genetic variants in Wernicke Korsakoff syndrome (WKS). Guerrini, I., Thomson, A.D., Cook, C.C., McQuillin, A., Sharma, V., Kopelman, M., Reynolds, G., Jauhar, P., Harper, C., Gurling, H.M. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2005) [Pubmed]
  7. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Diaz, G.A., Banikazemi, M., Oishi, K., Desnick, R.J., Gelb, B.D. Nat. Genet. (1999) [Pubmed]
  8. Defective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA). Boros, L.G., Steinkamp, M.P., Fleming, J.C., Lee, W.N., Cascante, M., Neufeld, E.J. Blood (2003) [Pubmed]
  9. Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Oyewumi, M.O., Liu, S., Moscow, J.A., Mumper, R.J. Bioconjug. Chem. (2003) [Pubmed]
  10. Thiamine, beta-cell function and peripheral glucose utilization in thiamine-responsive megaloblastic anemia (TRMA) syndrome. Pomero, F., Allione, A., Molinar Min, A., La Selva, M., Porta, M. Acta diabetologica. (2000) [Pubmed]
  11. Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms. Nabokina, S.M., Reidling, J.C., Said, H.M. J. Biol. Chem. (2005) [Pubmed]
  12. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Zeng, W.Q., Al-Yamani, E., Acierno, J.S., Slaugenhaupt, S., Gillis, T., MacDonald, M.E., Ozand, P.T., Gusella, J.F. Am. J. Hum. Genet. (2005) [Pubmed]
  13. Developmental maturation of intestinal and renal thiamin uptake: studies in wild-type and transgenic mice carrying human THTR-1 and 2 promoters. Reidling, J.C., Nabokina, S.M., Balamurugan, K., Said, H.M. J. Cell. Physiol. (2006) [Pubmed]
  14. Functional role of specific amino acid residues in human thiamine transporter SLC19A2: mutational analysis. Balamurugan, K., Said, H.M. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  15. In vitro and in vivo characterization of the minimal promoter region of the human thiamin transporter SLC19A2. Reidling, J.C., Said, H.M. Am. J. Physiol., Cell Physiol. (2003) [Pubmed]
  16. Novel mutation in the SLC19A2 gene in an African-American female with thiamine-responsive megaloblastic anemia syndrome. Lagarde, W.H., Underwood, L.E., Moats-Staats, B.M., Calikoglu, A.S. Am. J. Med. Genet. A (2004) [Pubmed]
  17. Mechanism of thiamine uptake by human colonocytes: studies with cultured colonic epithelial cell line NCM460. Said, H.M., Ortiz, A., Subramanian, V.S., Neufeld, E.J., Moyer, M.P., Dudeja, P.K. Am. J. Physiol. Gastrointest. Liver Physiol. (2001) [Pubmed]
  18. Expression and promoter analysis of SLC19A2 in the human intestine. Reidling, J.C., Subramanian, V.S., Dudeja, P.K., Said, H.M. Biochim. Biophys. Acta (2002) [Pubmed]
  19. SLC19A3 encodes a second thiamine transporter ThTr2. Rajgopal, A., Edmondnson, A., Goldman, I.D., Zhao, R. Biochim. Biophys. Acta (2001) [Pubmed]
  20. Characteristics of thiamine uptake by the BeWo human trophoblast cell line. Keating, E., Lemos, C., Azevedo, I., Martel, F. J. Biochem. Mol. Biol. (2006) [Pubmed]
  21. Characterization of a murine high-affinity thiamine transporter, Slc19a2. Fleming, J.C., Steinkamp, M.P., Kawatsuji, R., Tartaglini, E., Pinkus, J.L., Pinkus, G.S., Fleming, M.D., Neufeld, E.J. Mol. Genet. Metab. (2001) [Pubmed]
  22. Long-term follow-up of diabetes in two patients with thiamine-responsive megaloblastic anemia syndrome. Valerio, G., Franzese, A., Poggi, V., Tenore, A. Diabetes Care (1998) [Pubmed]
  23. Spatial and temporal gene expression patterns occur during corm development. de Castro, L.A., Carneiro, M., Neshich, D.d.e. .C., de Paiva, G.R. Plant Cell (1992) [Pubmed]
  24. Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53. Lo, P.K., Chen, J.Y., Tang, P.P., Lin, J., Lin, C.H., Su, L.T., Wu, C.H., Chen, T.L., Yang, Y., Wang, F.F. J. Biol. Chem. (2001) [Pubmed]
  25. TH1/TH2 and TC1/TC2 profiles in peripheral blood and bronchoalveolar lavage fluid cells in pulmonary sarcoidosis. Inui, N., Chida, K., Suda, T., Nakamura, H. J. Allergy Clin. Immunol. (2001) [Pubmed]
WikiGenes - Universities