The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Aminofluoren     9H-fluoren-2-amine

Synonyms: CCRIS 31, CHEMBL84472, AGN-PC-0D16X8, SGCUT00125, SureCN225901, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aminofluoren

 

Psychiatry related information on Aminofluoren

 

High impact information on Aminofluoren

 

Chemical compound and disease context of Aminofluoren

 

Biological context of Aminofluoren

 

Anatomical context of Aminofluoren

 

Associations of Aminofluoren with other chemical compounds

 

Gene context of Aminofluoren

  • Interestingly, the carcinogen 2-aminofluorene was very efficiently metabolized by both NAT1 and NAT2 [29].
  • All rabbit gastrointestinal tissues other than stomach possess a high capacity for the activation of 2-aminofluorene compatible with CYP4B1 expression [30].
  • In control yeast, no induction of RNR3 was observed upon exposure to 2-aminofluorene or aflatoxin B1 [31].
  • Genotoxic activation of 2-aminofluorene (a marker for Cyp4b1) by male and female mouse kidney microsomes were not affected by the SCD phenotype [32].
  • CYP1A2 transcripts were detected in the RNA samples as well, and bioactivation of 2-aminofluorene (2-AF) or 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), a CYP1A2-preferential activity, was catalyzed by the lung S9 fractions also [33].
 

Analytical, diagnostic and therapeutic context of Aminofluoren

  • Finally, we used HPLC to determine the ratio of acetylated (12%) to deacetylated (88%) 2-aminofluorene adducts formed in the parental cells [34].
  • Activation of the procarcinogens benzo(a)pyrene and 2-fluorenamine by liver homogenates (S9) prepared from senescent male CFN rats and C57BL/6J mice resulted in an enhanced production of mutagenic metabolites when compared to young rodents, as indicated by an enhancement of the induced reversion frequency in a Salmonella typhimurium bioassay [35].
  • The presence of homologues of rabbit cytochrome P-450 isozyme 5 in pulmonary and hepatic microsomal preparations from guinea pig, mouse, monkey, hamster, and rat was examined by immunoblotting and inhibition of metabolism of 2-aminofluorene with antibodies to isozyme 5 [36].
  • Metabolism of 2-aminofluorene was measured both colorimetrically (formation of a reduced iron chelate from the N-hydroxyfluorene metabolite) and radiochemically (separation of 3H-metabolites by high performance liquid chromatography and quantitation by scintillation counting) [36].
  • The influence of partial hepatectomy on the level of 2-aminofluorene (2-AF) induced DNA adducts in rat liver was studied [37].

References

  1. Activation of 2-aminofluorene by cultured plant cells. Plewa, M.J., Weaver, D.L., Blair, L.C., Gentile, J.M. Science (1983) [Pubmed]
  2. Relationship between the genetically determined acetylator phenotype and DNA damage induced by hydralazine and 2-aminofluorene in cultured rabbit hepatocytes. McQueen, C.A., Maslansky, C.J., Glowinski, I.B., Crescenzi, S.B., Weber, W.W., Williams, G.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  3. Solution structure of the aminofluorene [AF]-external conformer of the anti-[AF]-C8-dG adduct opposite dC in a DNA duplex. Mao, B., Hingerty, B.E., Broyde, S., Patel, D.J. Biochemistry (1998) [Pubmed]
  4. Conformation of amine-modified DNA: 2-aminofluorene- and 2-(acetylamino)fluorene-modified deoxydinucleoside monophosphates with all possible nearest neighbors. A comparison of search and optimization methods. Shapiro, R., Sidawi, D., Miao, Y.S., Hingerty, B.E., Schmidt, K.E., Moskowitz, J., Broyde, S. Chem. Res. Toxicol. (1994) [Pubmed]
  5. Effect of carcinogens and analogs on interferon induction. Barnes, M.C., Streips, U.N., Sonnenfeld, G. Oncology (1981) [Pubmed]
  6. Genetic differences in 2-aminofluorene pharmacokinetics between intact C57BL/6J and A/J mice. Hultin, T.A., Weber, W.W. Drug Metab. Dispos. (1985) [Pubmed]
  7. Activation and inactivation of a variety of mutagenic compounds by the reconstituted system containing highly purified preparations of cytochrome P-450 from rat liver. Kawano, S., Kamataki, T., Maeda, K., Kato, R., Nakao, T., Mizoguchi, I. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1985) [Pubmed]
  8. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis. Dutta, S., Li, Y., Johnson, D., Dzantiev, L., Richardson, C.C., Romano, L.J., Ellenberger, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. 2-Aminofluorene modified DNA duplex exists in two interchangeable conformations. Eckel, L.M., Krugh, T.R. Nat. Struct. Biol. (1994) [Pubmed]
  10. Acetylaminofluorene and aminofluorene adducts inhibit in vitro transcription of a Xenopus 5S RNA gene only when located on the coding strand. Chen, Y.H., Matsumoto, Y., Shibutani, S., Bogenhagen, D.F. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  11. Deacetylation to 2-aminofluorene as a major initial reaction in the microsomal metabolism of 2-acetylaminofluorene to mutagenic products in preparations from rabbit lung and liver. Aune, T., Vanderslice, R.R., Croft, J.E., Dybing, E., Bend, J.R., Philpot, R.M. Cancer Res. (1985) [Pubmed]
  12. Aloe-emodin effects on arylamine N-acetyltransferase activity in the bacterium Helicobacter pylori. Wang, H.H., Chung, J.G., Ho, C.C., Wu, L.T., Chang, S.H. Planta Med. (1998) [Pubmed]
  13. Biologically active aromatic amines derived from carcinogenic polycyclic aromatic hydrocarbons: synthesis and mutagenicity of aminobenzo[a]pyrenes. Fu, P.P., Heflich, R.H., Casciano, D.A., Huang, A.Y., Trie, W.M., Kadlubar, F.F., Beland, F.A. Mutat. Res. (1982) [Pubmed]
  14. Transformation of mutagenic aromatic amines into non-mutagenic species by alkyl substituents. Part I. Alkylation ortho to the amino function. Glende, C., Schmitt, H., Erdinger, L., Engelhardt, G., Boche, G. Mutat. Res. (2001) [Pubmed]
  15. Studies on the antimutagenesis of Phyllanthus orbicularis: mechanisms involved against aromatic amines. Ferrer, M., Sánchez-Lamar, A., Fuentes, J.L., Barbé, J., Llagostera, M. Mutat. Res. (2001) [Pubmed]
  16. The cytochrome P-450 monooxygenase system of rabbit bladder mucosa: enzyme components and isozyme 5-dependent metabolism of 2-aminofluorene. Vanderslice, R.R., Boyd, J.A., Eling, T.E., Philpot, R.M. Cancer Res. (1985) [Pubmed]
  17. Comparative adduct formation of 4-aminobiphenyl and 2-aminofluorene derivatives with macromolecules of isolated liver parenchymal cells. King, C.M., Traub, N.R., Cardona, R.A., Howard, R.B. Cancer Res. (1976) [Pubmed]
  18. Acetylator genotype-dependent metabolic activation of carcinogenic N-hydroxyarylamines by S-acetyl coenzyme A-dependent enzymes of inbred hamster tissue cytosols: relationship to arylamine N-acetyltransferase. Hein, D.W., Flammang, T.J., Kirlin, W.G., Trinidad, A., Ogolla, F. Carcinogenesis (1987) [Pubmed]
  19. Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002. Oda, Y., Yamazaki, H., Shimada, T. Carcinogenesis (1999) [Pubmed]
  20. Kinetics of arylamine N-acetyltransferase in tissues from rapid and slow acetylator mice. Mattano, S.S., Weber, W.W. Carcinogenesis (1987) [Pubmed]
  21. Acetylator genotype-dependent expression of arylamine N-acetyltransferase in human colon cytosol from non-cancer and colorectal cancer patients. Kirlin, W.G., Ogolla, F., Andrews, A.F., Trinidad, A., Ferguson, R.J., Yerokun, T., Mpezo, M., Hein, D.W. Cancer Res. (1991) [Pubmed]
  22. Enhancement of N-hydroxy-2-aminofluorene bacterial mutagenicity by the soluble protein fraction from rat liver and partial purification of the enhancement activity. Saccone, G.T., DasGupta, B.R., Pariza, M.W. Cancer Res. (1981) [Pubmed]
  23. Formation of unique arylamine:DNA adducts from 2-aminofluorene activated by prostaglandin H synthase. Krauss, R.S., Eling, T.E. Cancer Res. (1985) [Pubmed]
  24. Induction of repair synthesis of DNA in mammary and urinary bladder epithelial cells by N-hydroxy derivatives of carcinogenic arylamines. Wang, C.Y., Yamada, H., Morton, K.C., Zukowski, K., Lee, M.S., King, C.M. Cancer Res. (1988) [Pubmed]
  25. Metabolism and activation of 2-acetylaminofluorene in isolated rat hepatocytes. Dybing, E., Søderlund, E., Haug, L.T., Thorgeirsson, S.S. Cancer Res. (1979) [Pubmed]
  26. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases. Hammons, G.J., Guengerich, F.P., Weis, C.C., Beland, F.A., Kadlubar, F.F. Cancer Res. (1985) [Pubmed]
  27. Cloned mouse N-acetyltransferases: enzymatic properties of expressed Nat-1 and Nat-2 gene products. Martell, K.J., Levy, G.N., Weber, W.W. Mol. Pharmacol. (1992) [Pubmed]
  28. Acetylation of 2-aminofluorene derivatives by dog hepatic microsomes. Sone, T., Zukowski, K., Land, S.J., King, C.M., Wang, C.Y. Carcinogenesis (1991) [Pubmed]
  29. Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of liver isozymes and expressed products of two cloned genes. Grant, D.M., Blum, M., Beer, M., Meyer, U.A. Mol. Pharmacol. (1991) [Pubmed]
  30. Species-specific expression of CYP4B1 in rabbit and human gastrointestinal tissues. McKinnon, R.A., Burgess, W.M., Gonzalez, F.J., Gasser, R., McManus, M.E. Pharmacogenetics (1994) [Pubmed]
  31. Induction in the gene RNR3 in Saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Endo-Ichikawa, Y., Kohno, H., Tokunaga, R., Taketani, S. Biochem. Pharmacol. (1995) [Pubmed]
  32. Activities of cytochrome p450 enzymes in liver and kidney microsomes from systemic carnitine deficiency mice with a gene mutation of carnitine/organic cation transporter. Yamazaki, H., Iketaki, H., Shibata, A., Nakajima, M., Yokoi, T. Drug Metab. Pharmacokinet. (2002) [Pubmed]
  33. CYP1A2 is expressed along with CYP1A1 in the human lung. Wei, C., Cacavale, R.J., Kehoe, J.J., Thomas, P.E., Iba, M.M. Cancer Lett. (2001) [Pubmed]
  34. Characterization of mutations induced by 2-(N-acetoxy-N-acetyl)aminofluorene in the dihydrofolate reductase gene of cultured hamster cells. Carothers, A.M., Urlaub, G., Steigerwalt, R.W., Chasin, L.A., Grunberger, D. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  35. Increased production of mutagenic metabolites of carcinogens by tissues from senescent rodents. Baird, M.B., Birnbaum, L.S. Cancer Res. (1979) [Pubmed]
  36. Species-dependent expression and induction of homologues of rabbit cytochrome P-450 isozyme 5 in liver and lung. Vanderslice, R.R., Domin, B.A., Carver, G.T., Philpot, R.M. Mol. Pharmacol. (1987) [Pubmed]
  37. Partial hepatectomy of rats 3 weeks before or simultaneously with 2-aminofluorene injection can affect the amounts of adducts induced in hepatic DNA. Widłak, P., Widłak, W., Rzeszowska-Wolny, J. Carcinogenesis (1993) [Pubmed]
 
WikiGenes - Universities