The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

NSC-81161     (3R)-2-(3,4- dihydroxyphenyl)chroman- 3,5,7...

Synonyms: NSC-81162, SureCN13350313, AC1L5SMJ, NSC81161, NSC81162, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Epicatechin


Psychiatry related information on Epicatechin

  • After exclusion of cases diagnosed under 4 years follow-up, urinary EGC positivity showed a statistically significant inverse association with gastric cancer (OR = 0.52, 95% CI = 0.28-0.97) after adjustment for Helicobactor pylori seropositivity, smoking, alcohol drinking, and level of serum carotenes [6].

High impact information on Epicatechin


Chemical compound and disease context of Epicatechin


Biological context of Epicatechin


Anatomical context of Epicatechin


Associations of Epicatechin with other chemical compounds


Gene context of Epicatechin


Analytical, diagnostic and therapeutic context of Epicatechin


  1. Microarray-assisted pathway analysis identifies mitogen-activated protein kinase signaling as a mediator of resistance to the green tea polyphenol epigallocatechin 3-gallate in her-2/neu-overexpressing breast cancer cells. Guo, S., Lu, J., Subramanian, A., Sonenshein, G.E. Cancer Res. (2006) [Pubmed]
  2. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. Williamson, M.P., McCormick, T.G., Nance, C.L., Shearer, W.T. J. Allergy Clin. Immunol. (2006) [Pubmed]
  3. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Abd El Mohsen, M.M., Kuhnle, G., Rechner, A.R., Schroeter, H., Rose, S., Jenner, P., Rice-Evans, C.A. Free Radic. Biol. Med. (2002) [Pubmed]
  4. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Zhao, W.H., Hu, Z.Q., Hara, Y., Shimamura, T. Antimicrob. Agents Chemother. (2002) [Pubmed]
  5. Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai Cohort Study. Yuan, J.M., Gao, Y.T., Yang, C.S., Yu, M.C. Int. J. Cancer (2007) [Pubmed]
  6. Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China. Sun, C.L., Yuan, J.M., Lee, M.J., Yang, C.S., Gao, Y.T., Ross, R.K., Yu, M.C. Carcinogenesis (2002) [Pubmed]
  7. Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives. Agarwal, R., Katiyar, S.K., Zaidi, S.I., Mukhtar, H. Cancer Res. (1992) [Pubmed]
  8. Constitutive Overexpression of Nrf2-dependent Heme Oxygenase-1 in A549 Cells Contributes to Resistance to Apoptosis Induced by Epigallocatechin 3-Gallate. Kweon, M.H., Adhami, V.M., Lee, J.S., Mukhtar, H. J. Biol. Chem. (2006) [Pubmed]
  9. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. Ermakova, S., Choi, B.Y., Choi, H.S., Kang, B.S., Bode, A.M., Dong, Z. J. Biol. Chem. (2005) [Pubmed]
  10. Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. Kim, S.Y., Ahn, B.H., Min, K.J., Lee, Y.H., Joe, E.H., Min, d.o. .S. J. Biol. Chem. (2004) [Pubmed]
  11. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. Zhang, N., Weber, A., Li, B., Lyons, R., Contag, P.R., Purchio, A.F., West, D.B. J. Immunol. (2003) [Pubmed]
  12. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Navarro-Martínez, M.D., Navarro-Perán, E., Cabezas-Herrera, J., Ruiz-Gómez, J., García-Cánovas, F., Rodríguez-López, J.N. Antimicrob. Agents Chemother. (2005) [Pubmed]
  13. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Das, A., Banik, N.L., Ray, S.K. Int. J. Cancer (2006) [Pubmed]
  14. Synthesis and preliminary anticancer activity studies of C4 and C8-modified derivatives of catechin gallate (CG) and epicatechin gallate (ECG). Hayes, C.J., Whittaker, B.P., Watson, S.A., Grabowska, A.M. J. Org. Chem. (2006) [Pubmed]
  15. Activity of the tea component epicatechin gallate and analogues against methicillin-resistant Staphylococcus aureus. Hamilton-Miller, J.M., Shah, S. J. Antimicrob. Chemother. (2000) [Pubmed]
  16. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Spencer, J.P., Schroeter, H., Crossthwaithe, A.J., Kuhnle, G., Williams, R.J., Rice-Evans, C. Free Radic. Biol. Med. (2001) [Pubmed]
  17. Cytotoxicity and cytoprotective activity in naphthalenediols depends on their tendency to form naphthoquinones. Flueraru, M., Chichirau, A., Chepelev, L.L., Willmore, W.G., Durst, T., Charron, M., Barclay, L.R., Wright, J.S. Free Radic. Biol. Med. (2005) [Pubmed]
  18. Dietary flavonoids fail to suppress F2-isoprostane formation in vivo. Willcox, J.K., Catignani, G.L., Roberts, L.J. Free Radic. Biol. Med. (2003) [Pubmed]
  19. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Chow, H.H., Cai, Y., Hakim, I.A., Crowell, J.A., Shahi, F., Brooks, C.A., Dorr, R.T., Hara, Y., Alberts, D.S. Clin. Cancer Res. (2003) [Pubmed]
  20. Effects of epicatechin on rat islets of Langerhans. Hii, C.S., Howell, S.L. Diabetes (1984) [Pubmed]
  21. Epicatechin and its methylated metabolite attenuate UVA-induced oxidative damage to human skin fibroblasts. Basu-Modak, S., Gordon, M.J., Dobson, L.H., Spencer, J.P., Rice-Evans, C., Tyrrell, R.M. Free Radic. Biol. Med. (2003) [Pubmed]
  22. The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Lee, S.Y., Munerol, B., Pollard, S., Youdim, K.A., Pannala, A.S., Kuhnle, G.G., Debnam, E.S., Rice-Evans, C., Spencer, J.P. Free Radic. Biol. Med. (2006) [Pubmed]
  23. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Abrahams, S., Lee, E., Walker, A.R., Tanner, G.J., Larkin, P.J., Ashton, A.R. Plant J. (2003) [Pubmed]
  24. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Chow, H.H., Hakim, I.A., Vining, D.R., Crowell, J.A., Ranger-Moore, J., Chew, W.M., Celaya, C.A., Rodney, S.R., Hara, Y., Alberts, D.S. Clin. Cancer Res. (2005) [Pubmed]
  25. Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Widlansky, M.E., Duffy, S.J., Hamburg, N.M., Gokce, N., Warden, B.A., Wiseman, S., Keaney, J.F., Frei, B., Vita, J.A. Free Radic. Biol. Med. (2005) [Pubmed]
  26. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Murphy, K.J., Chronopoulos, A.K., Singh, I., Francis, M.A., Moriarty, H., Pike, M.J., Turner, A.H., Mann, N.J., Sinclair, A.J. Am. J. Clin. Nutr. (2003) [Pubmed]
  27. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Lee, Y.K., Shanafelt, T.D., Bone, N.D., Strege, A.K., Jelinek, D.F., Kay, N.E. Leukemia (2005) [Pubmed]
  28. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Schroeter, H., Spencer, J.P., Rice-Evans, C., Williams, R.J. Biochem. J. (2001) [Pubmed]
  29. Epigallocatechin suppression of proliferation of vascular smooth muscle cells: correlation with c-jun and JNK. Lu, L.H., Lee, S.S., Huang, H.C. Br. J. Pharmacol. (1998) [Pubmed]
  30. SHARP-2/Stra13/DEC1 as a potential repressor of phosphoenolpyruvate carboxykinase gene expression. Yamada, K., Ogata-Kawata, H., Matsuura, K., Miyamoto, K. FEBS Lett. (2005) [Pubmed]
  31. Interactions between dietary chemicals and human sulfotransferases-molecular mechanisms and clinical significance. Coughtrie, M.W., Johnston, L.E. Drug Metab. Dispos. (2001) [Pubmed]
  32. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent. Zhao, J., Wang, J., Chen, Y., Agarwal, R. Carcinogenesis (1999) [Pubmed]
  33. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Nakagawa, H., Hasumi, K., Woo, J.T., Nagai, K., Wachi, M. Carcinogenesis (2004) [Pubmed]
  34. Comparative chemopreventive mechanisms of green tea, black tea and selected polyphenol extracts measured by in vitro bioassays. Steele, V.E., Kelloff, G.J., Balentine, D., Boone, C.W., Mehta, R., Bagheri, D., Sigman, C.C., Zhu, S., Sharma, S. Carcinogenesis (2000) [Pubmed]
  35. Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Mailley, P., Cummings, E.A., Mailley, S.C., Eggins, B.R., McAdams, E., Cosnier, S. Anal. Chem. (2003) [Pubmed]
WikiGenes - Universities