The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Fenformin     1-(diaminomethylidene)-2- phenethyl-guanidine

Synonyms: Fenormin, Azucaps, Debeone, Debinyl, Dibiraf, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PHENFORMIN


High impact information on PHENFORMIN


Chemical compound and disease context of PHENFORMIN


Biological context of PHENFORMIN

  • Effect of phenformin on gluconeogenesis from lactate and intracellular pH in the isolated perfused guinea pig liver [12].
  • The kinetics of phenformin and its metabolite, p-hydroxyphenethylbiguanide, was studied in eight diabetic patients with varying degrees of renal impairment [13].
  • Phenformin has shown the characteristic properties of an antifibrinopathic agent in that it prolongs thrombin time and enhances fibrinolysis [14].
  • Since no evident influence of phenformin on the intestinal absorption of amino acids could be demonstrated, this effect may be explained by a local action on the intestinal wall exposed to high concentrations of the drug, resulting in the inhibition of the insulin secretion stimulating activity of the gut [15].
  • Effects of phenformin on blood sugar, serum triglyceride, thrombin time, euglobulin clot lysis time and cardiovascular complications were studied in maturity onset diabetes and in atherosclerotic patients with or without diabetes, for a period of 14-18 months [14].

Anatomical context of PHENFORMIN

  • Gluconeogenesis from lactate and hepatic cell pH (pHi) were measured in the isolated perfused livers of starved guinea pigs in the presence and absence of phenformin (phenethylbiguanide) [12].
  • When compared with phenformin, metformin was less active in increasing insulin binding to cultured cells, the ratio between the two drug responses being similar to that of their therapeutic dosage in patients [16].
  • Since vitamin B12malabsorption has been described in diabetics on biguanides and inhibition of bile acid absorption found in rat ileum the effect of treatment with different biguanides (phenformin, buformin, metformin) on bile acid metabolism and vitamin B12 absorption was assessed in maturity onset diabetics [17].
  • The hypothesis is advanced that the phenformin-induced increase in gut GLI secretion may bring about competition of the latter with pancreatic glucagon for receptors in liver cell membranes, reducing the effect of glucagon on the liver, and thus contributing to a decrease in glycaemia [18].
  • After a 24-h preincubation with maximal stimulatory concentrations of phenformin, specific [125I] insulin binding to its receptors in the four different cell lines were increased over control by 67.2 +/ 17.0%, 101.3 +/- 11.5%, 65.1 +/- 8.0%, and 44.0 +/- 12.1%, respectively (mean +/- SE) [19].

Associations of PHENFORMIN with other chemical compounds


Gene context of PHENFORMIN


Analytical, diagnostic and therapeutic context of PHENFORMIN


  1. Phenformin in the treatment of livedo vasculitis. Basler, R.S., Jones, H.E. N. Engl. J. Med. (1978) [Pubmed]
  2. Phenformin and lactic acidosis. Conlay, L.A., Loewenstein, J.E. JAMA (1976) [Pubmed]
  3. Phenformin-associated pancreatitis. Chase, H.S., Mogan, G.R. Ann. Intern. Med. (1977) [Pubmed]
  4. Phenformin-induced lacticacidosis associated with impaired debrisoquine hydroxylation. Oates, N.S., Shah, R.R., Idle, J.R., Smith, R.L. Lancet (1981) [Pubmed]
  5. Hyperchloremic acidosis during the recovery phase of diabetic ketosis. Oh, M.S., Carroll, H.J., Goldstein, D.A., Fein, I.A. Ann. Intern. Med. (1978) [Pubmed]
  6. Phenformin and hyperamylasemia in lactic acidosis. Conlay, L.A., Loewenstein, J.E. Ann. Intern. Med. (1977) [Pubmed]
  7. Letter: Phenformin in diabetes mellitus. Valenta, L.J. Ann. Intern. Med. (1976) [Pubmed]
  8. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferré, P., Foufelle, F. J. Biol. Chem. (2005) [Pubmed]
  9. Lactic acidosis associated with phenformin therapy. Evidence that inhibited lactate oxidation is the causative factor. Searle, G.L., Siperstein, M.D. Diabetes (1975) [Pubmed]
  10. Contraindications can damage your health--is metformin a case in point? Holstein, A., Stumvoll, M. Diabetologia (2005) [Pubmed]
  11. The effect of phenformin-HCl on patients with diabetes mellitus, studied under strict balance conditions. Geldermans, C.A., Terpstra, J., Krans, H.M. Diabetologia (1975) [Pubmed]
  12. Effect of phenformin on gluconeogenesis from lactate and intracellular pH in the isolated perfused guinea pig liver. Lloyd, M.H., Iles, R.A., Walton, B., Hamilton, C.A., Cohen, R.D. Diabetes (1975) [Pubmed]
  13. Defective hydroxylation of phenformin as a determinant of drug toxicity. Bosisio, E., Kienle, M.G., Galli, G., Ciconali, M., Negri, A., Sessa, A., Morosati, S., Sirtori, C.R. Diabetes (1981) [Pubmed]
  14. Antifibrin action of phenformin. Banerjee, R.N., Kumar, V., Rao, S.R., Sahni, A.L., Arya, M., Bardhan, J. Diabetologia (1975) [Pubmed]
  15. The effect of phenformin on amino acid-induced insulin secretion in diabetics. Czyzyk, A., Lawecki, J., Rogala, H., Malczewski, B., Kowalski, H. Diabetologia (1975) [Pubmed]
  16. Effect of metformin on insulin binding to receptors in cultured human lymphocytes and cancer cells. Pezzino, V., Trischitta, V., Purrello, F., Vigneri, R. Diabetologia (1982) [Pubmed]
  17. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Caspary, W.F., Zavada, I., Reimold, W., Deuticke, U., Emrich, D., Willms, B. Diabetologia (1977) [Pubmed]
  18. The effect of phenformin upon the plasma pancreatic and gut glucagon-like immunoreactivity in diabetics. Czyzyk, A., Heding, L.G., Malczewski, B., Miedzinska, E. Diabetologia (1975) [Pubmed]
  19. Comparison of the in vitro effect of biguanides and sulfonylureas on insulin binding of its receptors in target cells. Vigneri, R., Pezzino, V., Wong, K.Y., Goldfine, I.D. J. Clin. Endocrinol. Metab. (1982) [Pubmed]
  20. Insulin therapy in phenformin-associated lactic acidosis; a case report, biochemical considerations and review of the literature. Dembo, A.J., Marliss, E.B., Halperin, M.L. Diabetes (1975) [Pubmed]
  21. Substrate specificity of the form of cytochrome P-450 catalyzing the 4-hydroxylation of debrisoquine in man. Boobis, A.R., Murray, S., Kahn, G.C., Robertz, G.M., Davies, D.S. Mol. Pharmacol. (1983) [Pubmed]
  22. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Harthill, J.E., Meek, S.E., Morrice, N., Peggie, M.W., Borch, J., Wong, B.H., Mackintosh, C. Plant J. (2006) [Pubmed]
  23. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Hawley, S.A., Boudeau, J., Reid, J.L., Mustard, K.J., Udd, L., Mäkelä, T.P., Alessi, D.R., Hardie, D.G. J. Biol. (2003) [Pubmed]
  24. Plasma glucagon suppression by phenformin in man. Bohannon, N.V., Karam, J.H., Lorenzi, M., Gerich, J.E., Matin, S.B., Forsham, P.H. Diabetologia (1977) [Pubmed]
  25. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Sakamoto, K., Göransson, O., Hardie, D.G., Alessi, D.R. Am. J. Physiol. Endocrinol. Metab. (2004) [Pubmed]
  26. Phenformin-induced lactic acidosis in diabetic patients. Assan, R., Heuclin, C., Girard, J.R., LeMaire, F., Attali, J.R. Diabetes (1975) [Pubmed]
  27. Disposition of metformin (N,N-dimethylbiguanide) in man. Sirtori, C.R., Franceschini, G., Galli-Kienle, M., Cighetti, G., Galli, G., Bondioli, A., Conti, F. Clin. Pharmacol. Ther. (1978) [Pubmed]
  28. Effects of insulin, biguanide antihyperglycaemic agents and beta-adrenergic agonists on pathways of myocardial proteolysis. Thorne, D.P., Lockwood, T.D. Biochem. J. (1990) [Pubmed]
  29. Metabolic immunodepression and metabolic immunotherapy: an attempt of improvement in immunologic response in breast cancer patients by correction of metabolic disturbances. Dilman, V.M., Berstein, L.M., Ostroumova, M.N., Fedorov, S.N., Poroshina, T.E., Tsyrlina, E.V., Buslaeva, V.P., Semiglazov, V.F., Seleznev, I.K., Bobrov YuF, n.u.l.l., Vasilyeva, I.A., Kondratjev, V.B., Nemirovsky, V.S., Nikiforov, Y.F. Oncology (1982) [Pubmed]
  30. Fluorometric determination of biguanides in serum by high-performance liquid chromatography with reagent-containing mobile phase. Kobayashi, Y., Kubo, H., Kinoshita, T., Nishikawa, T. J. Chromatogr. (1988) [Pubmed]
WikiGenes - Universities